首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
地质学   24篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   4篇
  1984年   2篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
2.
For the first time Arundian and Holkerian faunas have been recognized from the lower part of the Dinantian succession in North Wales. These limestones and sandstones, hitherto regarded as Asbian, have a macrofauna and microfauna confirming their older age, and this discovery' has necessitated a revision of the palaeogeography in the North Wales region. Biostratigraphical correlations have been made with contemporaneous platform successions in the Central, Northern, and Southwest Provinces of Britain. A new genus and species of foraminifer, Groessensella moldensis, is described.  相似文献   
3.
The Dinantian Edale Basin is located to the north of the Derbyshire carbonate platform and underlies the Upper Carboniferous of the central Pennines. The Edale Basin was thought to be part of a large basin which extended from the Derbyshire carbonate platform to the Askrigg Block. The presence of aggregate grains and ooids in the Alport Borehole suggests that a carbonate platform, possibly located on the Holme structural high, was present underneath the central Pennines. This platform is called the Holme Platform. The Arundian to early Asbian section of the Alport Borehole represents deposition of resedimented shallow-water carbonates with occasional bioturbated periplatform carbonates and basinal shales on the middle part of a carbonate ramp. Volcaniclastic sediments may have been derived from a volcanic centre within the Edale Basin. A change in sedimentation during the mid-Asbian to the deposition of basinal shales and distal carbonate turbidites is attributed to starvation of the basin. This may have been caused by a combination of the development of accretionary rimmed carbonate shelves and the repeated emergence of shelf carbonates deposited on surrounding carbonate platforms. The late Asbian/early Brigantian section of the Edale Borehole is interpreted as a distal equivalent of the ‘Beach Beds’ which outcrop at the north margin of the Derbyshire carbonate platform. The ‘Beach Beds’ represent bioclastic turbidites derived from the Derbyshire carbonate platform. Throughout the Brigantian, sedimentation in the Edale Basin was dominated by the deposition of distal carbonate turbidites and basinal shales. Variation of dip through the Alport Borehole indicates the common occurrence of slumps throughout the sequence and the presence of either an angular unconformity or a fault within the early Brigantian section.  相似文献   
4.
Two unusual subaerial exposure horizons containing fibrous columnar calcite crystals are described from the (early Chadian) Lower Carboniferous of Portishead, near Bristol in southwest Britain. The lower horizon overlies the Courceyan Black Rock Limestone (mid-ramp facies) and is separated from the upper horizon by the Sub-Oolite Bed and is overlain by the Chadian Gully Oolite (both are inner ramp deposits). Regionally the Portishead Palaeosol Beds are interpreted as forming part of extensive emergent surfaces which developed along the southern margin of the Welsh–Brabant Massif. They correlate with similar subaerial exposure horizons in Belgium and southern Germany, and may be the product of a proposed major eustatic sea level fall at the end of the Courceyan.  相似文献   
5.
The late Chadian Foel Formation, previously thought to be confined to the Dyserth area of North Wales, forms a poorly exposed but persistent basal unit to much of the Dinantian crop east of the Clwydian Range, necessitating a revision of the local lithostratigraphy. The formation comprises a peritidal heterolith which, together with the lowest few metres of the overlying Llanarmon Limestone, yields microfossil assemblages diagnostic of the Eoparastaffella Cf4α Subzone. Succeeding strata, containing the lowest archaediscid foraminifera, provide the first record of Cf4β assemblages from North Wales and establish an early Arundian age for these beds. The Foel Formation was deposited as an aggradational sequence on the northern flank of St. George's Land during a pulsed transgression which began in late Chadian times. The widely recognized basal Arundian transgression is represented by the contact between the Foel Formation and overlying platform carbonates. The latter overlap the Foel Formation in the southernmost part of the Clwydian crop demonstrating, for the first time, southwards onlap on the northern side of the Bala–Bryneglwys Fault System.  相似文献   
6.
The Carboniferous succession in southeast County Limerick, on the southeastern margin of the Shannon Trough, is Courceyan to mid-Namurian in age and over 1900 m thick. The lithostratigraphy is described in detail. Its most important aspect is the presence of two thick volcanic sequences, a Chadian one of the alkali basalt to trachyte suite and one of Asbian age dominated by limburgites and ankaramites. The associated Dinantian carbonates are of shelf or ramp facies throughout, and no fundamental division into shelf and basin facies occurs as in the Dublin and Craven Basins in early Viséan times. Rapid differential subsidence between this area and the Shannon Estuary began during deposition of the late Courceyan to early Chadian Waulsortian facies but was less marked in the remaining Viséan when much of the volcanic topography was preserved by rapid basinal subsidence. There was basinal inversion in the late Dinantian to lower Namurian, followed by renewed subsidence in mid-Namurian times. This contrasts with the continuous rapid subsidence of the area further west on the Shannon Estuary. This behaviour, together with a comparison of that of nearby Carboniferous basins such as the Dublin, South Munster, and Craven Basins, which lack substantial volcanic sequences, suggests an origin in a transtensional regime rather than one of simple crustal stretching.  相似文献   
7.
 Field and laboratory structural studies show that the Devonian–Dinantian units of the northeast French Massif Central experienced a complex and contrasting tectonic–metamorphic evolution during the Hercynian orogeny. The structural analysis of the pre-Middle Visean Brévenne–Violay–Beaujolais rocks, in the Loire area, shows a polyphase tectonic evolution associated with greenschist to amphibolite facies metamorphism. The first event, D1, probably occurred in Early Tournaisian or Latest Devonian times. It is responsible for the flat-lying regional foliation and the NW/SE- to N/S-trending lineation. It is well observed in the Violay group and corresponds to the NW-vergent emplacement of the Late Devonian units upon their gneissic basement, represented by the Affoux gneisses. The second event, D2, is responsible for the NE/SW- to E/W-trending lineation. To the south, D2 deformation is locally reworked by the Grand-Chemin dextral wrench fault, around 345–350 Ma ago. This polyphase deformation is also found in several Devonian–Dinantian areas of the NE Massif Central, but not in Morvan. This tectonics corresponds to the Tournaisian closure, by northward thrusting and subsequent intracontinental deformation, of the oceanic Brévenne–Violay–Beaujolais rift which opened in Devonian times in a back-arc setting. Received: 4 September 1998 / Accepted: 27 May 1999  相似文献   
8.
Recent revision of the biostratigraphy allows the recognition of a stratigraphic entity (here termed Freyrian) between the base of the Moliniacian stage and the base of the Viséan and simplifies sedimentological interpretation of late Tournaisian events around Dinant, in Belgium. Petrographic analysis of Freyrian rocks in Waulsortian buildups and peri-Waulsortian facies reveals a pattern of carbonate sedimentation related to the submarine topography developed by the buildups, and to sea-level changes. Graded beds and thin layers of grainstone in the predominantly fine-grained peri-Waulsortian sediments represent influxes derived mainly from nearby buildups during a period of shallowing. Using the sequence of foraminiferan assemblages which colonized the buildups as a stratigraphic scale, the earlier influxes are shown to have occurred only close to the presumed source, whereas later influxes extended further and marked the culmination of the shallowing phase. Deposition during the latter part of the Freyrian appears to have occurred in rather deeper, less disturbed water. The Moliniacian and Viséan boundary stratotypes, both in peri-Waulsortian facies, are critically assessed because almost all the stratigraphically useful foraminiferans occur in the rare grainstones resulting from sediment influxes. Tetrataxis was one of the few foraminiferans to colonize proximal peri-Waulsortian areas and appears to have ranged to a water depth of about 200 m. Downslope diachronism of colonization is interpreted as evidence of a sea-level fall of about 140 m and is used to draw a sea-level curve for this late Tournaisian regression. Using the same depth scale, microbial coating extended to about 300 m and its development appears to have been related to low sedimentation rates rather than photic conditions. © 1997 John Wiley & Sons, Ltd.  相似文献   
9.
The 2-km deep Athboy Borehole (1439/2) together with the lower part of boreholes EP30 and N915 form a standard type section for strata of Dinantian (Courceyan to Asbian) age in west Co. Meath. Above a thin basal red-bed siliciclastic sequence, the marine Courceyan shelf succession is almost 600 m thick. It comprises the Liscartan, Meath, and Moathill Formations of the Navan Group and the Slane Castle Formation of the succeeding Boyne Group. The shallow-water limestones include micrites, oolites, and sandy bioclastic packstones and grainstones with subordinate skeletal wackestones and shales. Lateral facies changes from north to south in the Navan area suggest deepening across a shelf towards a depocentre further to the south around Trim. The deeper-water Waulsortian Limestones of late Courceyan to Chadian age (Feltrim Formation, ca. 213 m thick) form a series of five sheet-like mudbanks, interbedded with generally thin units of nodular crinoidal limestones and shales. The mudbanks are formed of bryozoan-rich peloidal wackestones and lime-mudstones with phase C and D components. Rare soft-sediment breccias occur at the bottom and top of banks. The succeeding Fingal Group commences with a thin interval (3–20 m) of black shales, laminated packstones, and micritic limestones of Chadian age, the Tober Colleen Formation. This is followed by the Lucan Formation (Chadian to Asbian) predominantly of laminated and graded calciturbidites, laminated sandstones, cherts, and black shales, which is over 1300 m thick. Ten sedimentary units have been informally defined, based on lithofacies and facies associations. The oldest unit, the Tara Member, is characterized by proximal debris-flow breccia deposits and nodular mudstones. A thick bioturbated micrite and shale unit (Ardmulchan Member) in the middle of the formation is overlain directly by a coarse oolitic and crinoidal grainstone unit (Beauparc Member). Near the top of the formation is a distinctive unit of coarse-grained laminated sandstones and shales (Athboy Member). The highest rocks in the Borehole are clean thickly-bedded limestones of the Asbian Naul Formation (>90 m thick). The youngest Dinantian strata in the area, the Brigantian Loughshinny Formation, marks a return to shale-dominant basin sedimentation. The significance of this work lies in the fact that the Athboy borehole is the longest continuously cored borehole in the Carboniferous of Ireland and provides a continuous sedimentary and biostratigraphic record for the northern part of the Dublin Basin. Foraminiferal biozones (Cf2–Cf6) have been recognized in this and in borehole N915, and Stage boundaries identified, which can be applied throughout the Basin. The sedimentary record for the Lucan Formation indicates four tectonic pulses during the Viséan, in the late Chadian/early Arundian, mid-Arundian, Holkerian, and late Holkerian/early Asbian.  相似文献   
10.
The contact zone at the base of the Waulsortian (Upper Tournaisian) carbonate mud‐bank complex in western Ireland has been investigated at four localities spaced over a distance of 120 km. At all localities, a transition facies up to 3 m thick, characterized by several types of grumous (clotted and/or peloidal) carbonate muds, immediately underlies the Waulsortian facies. These muds show a developmental sequence provisionally interpreted as a necessary precursor to the formation of Waulsortian polymuds. Such pre‐bank precursors produced thin (a few decimetres) units of transition facies. The same mud types also persisted as an aureole around growing banks (mud‐mounds). Migration of the aureole during bank progradation produced thicker units of transition facies. The distribution of skeletal grain types in the Waulsortian banks, the transition facies and the ‘background’ argillaceous bioclastic limestones show two trends: one regional and one local. The regional trend is expressed by progressive north–south attenuation and, in some cases (for example, plurilocular foraminifera), the disappearance of organism groups. It parallels changes in Waulsortian Phases (defined by skeletal grain‐type assemblages) and is thought to indicate a southerly increase in water depth. The local trend, which occurs only in the two southern localities (deeper water), expresses differences between the skeletal grain content of the various lithofacies. These differences result partly from increased sensitivity to substrate texture by organism groups suffering southward attenuation (notably gastropods, hyalosteliid sponges, aoujgaliids, Earlandia and kirkbyacean ostracods) and partly from selective colonization, particularly of the transition facies, by tabulate corals and stick/ramose bryozoans. However, the developmental sequence of precursor carbonate muds is the same at all localities, indicating that the mud‐making process (probably microbial) was independent of water depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号