首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   5篇
  2020年   1篇
  2015年   1篇
  2009年   1篇
  2006年   2篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Upper Jurassic and Lower Cretaceous sedimentary layers are represented in the Brazilian Paraná Basin by the fluvio–aeolian Guará Formation and the Botucatu Formation palaeoerg, respectively, overlapped by the volcanic Serra Geral Formation. In Uruguay, the corresponding sedimentary units are named Batoví and Rivera Members (both from the Tacuarembó Formation), and the lava flows constitute the Arapey Formation (also in Paraná Basin). Despite the lack of body fossils in the mentioned Brazilian formations, Guará/Batoví dinosaur fauna is composed of theropod, ornithopod and wide–gauge sauropod tracks and isolated footprints, as well as theropod teeth. In turn, the Botucatu/Rivera dinosaur fauna is represented by theropod and ornithopod ichnofossils smaller than those from the underlying units. The analysis of these dinosaur ichnological records and comparisons with other global Mesozoic ichnofauna indicates that there is a size reduction in dinosaur fauna in the more arid Botucatu/Rivera environment, which is dominated by aeolian dunes. The absence of sauropod trackways in the Botucatu Sandstone fits with the increasingly arid conditions because it is difficult for heavy animals to walk on sandy dunes, as well as to obtain the required amount of food resources. This comparison between the Upper Jurassic and Lower Cretaceous dinosaur fauna in south Brazil and Uruguay demonstrates the influence of aridization on the size of animals occupying each habitat.  相似文献   
2.
The Tacuarembó Formation has yielded a fossil assemblage that includes the best known body fossils, consisting of isolated scales, teeth, spines, and molds of bones, recovered from thin and patchy bonebeds, from the Botucatu Desert, Parana Basin, South America. The remains are preserved in the sandstones widespread around the city of Tacuarembó. We propose a new formalized nomenclature for the Tacuarembó Formation, naming its “Lower” and “Upper” members as the Batoví (new name) and Rivera (new rank) members, respectively. An assemblage zone is defined for the Batoví Member (fluviolacustrine and aeolian deposits). In this unit, the freshwater hybodontid shark Priohybodus arambourgi D’Erasmo is well represented. This species was previously recorded in Late Jurassic–Early Cretaceous units of the Sahara and the southern Arabian Peninsula. Globally considered, the fossil assemblage of this member (P. arambourgi, dipnoan fishes, Ceratosaurus-like theropods, and conchostracans) is indicative of a Kimmeridgian–Tithonian age, which in combination with the stratigraphic relationships of the Tacuarembó Formation with the overlying basalts of the Arapey Formation (132 My average absolute age) implies that the latter was deposited during the Kimmeridgian–Hauterivian interval.  相似文献   
3.
This study was carried out in the Córrego do Vaçununga basin constituted of eolic sandstones of Botucatu Formation and residual unconsolidated materials (>90%), considered the most important unconfined aquifer in Brazil, in the city of Luiz Antonio, State of São Paulo, Brazil. Laboratory and in situ tests were performed to characterize the unconsolidated materials in terms of basic physical properties, potential infiltration rate, suction and hydraulic conductivity. The results for infiltration and overland flow depths were obtained according to Morel-Seytoux and Khanji (Water Resour Res 10(4):795–800, 1976) and Chu (Water Resour Res 14(3):461–466, 1978) adaptation of the Green and Ampt [J Agr Sci 4(Part 1):1–24, 1911] model for steady and transient rainfalls, respectively. Rainfall data were collected from January of 2000 to December of 2002, and 12 scenarios were defined considering the intensity and durations. Rather than high homogeneity in terms of the texture of unconsolidated materials, the infiltration and overland flow ratio depends on the type of land use and associated management practices. The results showed that rainfall with high intensity and short duration do not produce high overland flow ratio as we have observed for transient scenarios with long duration and low intensities.  相似文献   
4.
The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote‐sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age‐bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short‐lived aeolian constructional events since ~25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ~12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ~7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform‐normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests.  相似文献   
5.
The Lower Cretaceous Botucatu Formation records the development of widespread dry–aeolian desert sedimentation throughout the Paraná Basin in south-west Gondwana. To reconstruct the provenance of the aeolian sediment, petrography, granulometric analysis, U-Pb detrital zircon ages have been determined from along the southern basin margin in Rio Grande do Sul state (southern Brazil) and Uruguay (Tacuarembó region). The dataset reveals a mean composition Qt89F8L3, comprising very fine to medium-grained quartozose and feldspatho-quartzose framework. Heavy mineral analysis reveals an overall dominance of zircon, tourmaline and rutile grains (mean ZTR0.84) with sporadic garnet, epidote and pyrolusite occurrences. The detrital zircon U-Pb ages are dominated by Cambrian to Neoproterozoic (515 to 650 Ma), Tonian to Stenian (900 to 1250 Ma) and Orosirian to Rhyacian (1.8 to 2.2 Ga) material. The detrital zircon dataset demonstrates a significant lateral variation in sediment provenance: Cambrian to Neoproterozoic detrital zircons dominate in the east, while Tonian to Stenian and Orosirian to Rhyacian ages predominate in the west of the study area. Sandstones are quartz-rich with dominantly durable zircon, tourmaline and rutile heavy mineral suite, with subtle but statistically significant along-strike differences in heavy mineral populations and detrital mineralogy which are thought to record local sediment input points into the aeolian system. The similar age spectra of Botucatu desert with proximal Paraná Basin units, the predominance of quartzose, and zircon, tourmaline and rutile components, suggests that recycling is the mechanism responsible for the erg feeding.  相似文献   
6.
Water chemical data from the Botucatu Sandstone aquifer in the São Paulo State part of the Paraná Basin, Brazil, was evaluated using geochemical methods and two statistical analyses: cluster analysis and factor analysis. The results were used to develop a conceptual geochemical model, in which three geochemical regions were identified, and their chemical behavior was modeled. The characteristic chemicals, changing from the recharge area to the center of the basin, are: SiO2—(HCO3 and Ca2+)—(Na+, CO32−, and SO42−). The distribution of the chemicals is interpreted as controlled by different water–rock interaction processes in the different regions. In the recharge area, dissolution of alkali–feldspar minerals in the sandstone is the main reaction observed; in the mid-section of the basin, calcite dissolution results in high calcium and bicarbonate concentration; in the center of the basin, leakage from underlying layers becomes the governing factor.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号