首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
测绘学   1篇
地球物理   1篇
地质学   2篇
  2020年   1篇
  2013年   1篇
  2009年   1篇
  1994年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
ABSTRACT

Widespread forest fire events occurred in the foothills of North Western Himalaya during 24 April to 2 May 2016 (Event-1) and 20–30 May 2018 (Event-2). Their impacts were investigated on the distribution of pollutant gases ozone (O3), carbon monoxide (CO), and oxides of nitrogen (NOx) over Uttarakhand using simulations of Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and in-situ observations of these gases over Dehradun, the capital of Uttarakhand. During Event-1, the observed CO mixing ratio over Dehradun increased from 25 April 2016 onwards, attained maximum (705.8 ± 258 ppbv) on 2 May 2016 and subsequently decreased. The rate of increase of daily baseline CO was 29 ppbv/day during HFAP (High Fire Activity Period). During Event-2, daily average concentrations of CO, O3, and NOx showed systematic increase over Dehradun during HFAP period. The rate of increase of CO was 9 ppbv/day, while it was very small for NOx and O3. To quantitatively estimate the influence of forest fire emissions, two WRF-Chem simulations were made: one with biomass burning (BB) emissions and other without BB emissions. These simulations showed 52% (34%) enhancement in CO, 52% (32%) enhancement in NOx, and 11% (9%) enhancement in O3 during HFAP for Event-1 (Event-2). A clear positive correlation (r = 0.89 for Event-1, r = 0.69 for Event-2) was found between ?O3 (O3with BB minus O3without BB) and ?CO (COwith BB minus COwithout BB), indicating rapid production of ozone in the fire plumes. For both the events, the vertical distribution of ?O3, ?CO, and ?NOx showed that forest fire emissions influenced the air quality upto 6.5 km altitude. Peaks in ?O3, ?CO, and ?NOx during different days suggested the role of varying dispersion and horizontal mixing of fire plumes.  相似文献   
2.
Abstract

A finite element model to simulate runoff and soil erosion from agricultural lands has been developed. The sequential solutions of the governing differential equations were found: Richards' equation with a sink term for infiltration and soil water dynamics under cropped conditions; St Venant equation with kinematic wave approximation for overland and channel flow; and sediment continuity equation, for soil erosion. The model developed earlier has been improved to simulate erosion/deposition in impoundments and predicted and observed soil loss values were in reasonably good agreement when the model was tested for a conservation bench terrace (CBT) system. The finite element model was extensively applied to study the hydrological behaviour of a CBT system vis-à-vis the conventional system of sloping borders. The model estimates runoff and soil loss reasonably well, under varying conditions of rainfall and at different crop growth stages. The probable reasons for discrepancies between observation and simulation are reported and discussed. Sensitivity analysis was carried out to study the effect of various hydrological, soil and topographical parameters, such as ratio of contributing to receiving areas, weir length, depth of impoundment, slope of contributing area, etc. on the flow behaviour in a CBT system.  相似文献   
3.
A.K. Mahajan   《Engineering Geology》2009,104(3-4):232-240
Shear wave velocity of the near surface soil at nearly 50 sites in the sub Himalayan mountain exit covering Doon fan deposits, was determined using Multi-channel Analysis of Surface Waves (MASW), a seismic reflection technique. Based on the average shear wave velocity of the upper 30 m soil column, sites in the Dehradun fan are predominantly classified as class ‘D’ (180–360 m/s). Similarly, sites located on the northwestern, eastern and southeastern sides of the fan deposit have shear wave velocities (in the upper 30 m soil) greater than 360 m/s, thereby classifying them as class ‘C’ (360–760 m/s) in accordance with NEHRP provisions. Some of the sites towards the southwestern side of the fan deposits had average shear wave velocities less than 180 m/s and could be classified as soil class ‘E’. One dimensional site effects, including amplification and dynamic period were calculated for the majority of the sites. However, some of the representative suite of sites across the north–south profile of Dehradun fan has been discussed here. Although the attenuation is greater on the southwestern side of the Dehradun fan deposits (i.e. thicker, low velocity sediments) and the sites had been classified as class ‘D’ and ‘E’ but the site amplification tends to be greater in the northern and northwestern part of the city due to large impedance contrast with in the near surface soils.  相似文献   
4.
We estimate the distribution of slip in the dip section of the causative fault for the 1905 Kangra earthquake by applying the minimum norm inversion technique to differences in pre- and post-earthquake levelling data collected along the Saharanpur-Dehradun-Mussoorie highway. For this purpose it is assumed that the causative fault of the 1905 Kangra earthquake was planar with a dip of 5° in the northeast direction and that it had a depth of 6 km at the southern limit of the Outer Himalaya in Dehradun region. The reliably estimated maximum slip on the fault is 7.5 m under the local northern limit of the Outer Himalaya. Using the inverted slip distribution we estimate that the maximum permanent horizontal and vertical displacements at the surface due to the Kangra earthquake were about 4 m and 1.5m respectively. The maximum transient displacements at the surface should have exceeded these permanent displacements. These estimates of maximum slip on the causative fault and the resultant maximum permanent and transient displacements at the surface during the Kangra earthquake may be taken tentatively as being representative of the great Himalayan earthquakes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号