首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  国内免费   1篇
地球物理   10篇
地质学   23篇
综合类   2篇
  2017年   1篇
  2016年   1篇
  2013年   4篇
  2012年   1篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
排序方式: 共有35条查询结果,搜索用时 171 毫秒
1.
Dehydration (vapour absent) partial melting reactions in the Earth's crust produce a hydrous granitic melt phase, new anhydrous minerals that are mostly pyroxenes, and new plagioclase more calcic than the initial plagioclase. These solid phases of the melt reaction are restite. If the restite is carried to high levels in the crust as a component of the magma, cooling and crystallisation to granite will result in back reactions in which the H2O in the melt phase is consumed and is not then available to form a hydrothermal solution. Even in magmas in which some restite has been removed there will be some back reaction and again less H2O. Only fractional crystallisation will enrich the H2O in the magma in sufficient amounts to form a substantial quantity of hydrothermal solution and possible mineralisation.  相似文献   
2.
Ultramafic and mafic xenoliths of magmatic origin, sampled in the Beaunit vent (northern French Massif Central), derive from the Permian (257 Ma) Beaunit layered complex (BLC) that was emplaced at the crust-mantle transition zone (∼1 GPa). These plutonic xenoliths are linked to a single fractional crystallisation process in four steps: peridotitic cumulates; websteritic cumulates; Al-rich mafic cumulates (plagioclase, pyroxenes, garnet, amphibole and spinel) and finally low-Al mafic cumulates. This sequence of cumulates can be related to the compositional evolution of hydrous Mg basaltic magma that evolved to high-Al basalt and finally to andesitic basalt. Sr and Nd isotopic compositions confirm the co-genetic character of the various magmatic xenoliths and argue for an enriched upper mantle source comparable to present mantle wedges above subduction zones. LILE, LREE and Pb enrichment are a common feature of all xenoliths and argue for an enriched sub-alkaline transitional parental magma. The existence of a Permian magma chamber at 30 km depth suggests that the low-velocity zone observed locally beneath the Moho probably does not represent an anomalous mantle but rather a sequence of mafic/ultramafic cumulates with densities close to those of mantle rocks.  相似文献   
3.
 Experiments were conducted on the fragmentation of analogue low-strength porous material (plastiprin) by rapid decompression in a shock-tube-type apparatus. The porous samples (length=365 mm, cross-section dimensions 40×40 mm) pressurized by air to pressures up to 0.9 MPa, were rapidly decompressed to 0.1 MPa. Rapid decompression of samples caused fragmentation and ejection of the fragmentation products into a large volume tank. The process of analogue material fragmentation was documented using high-speed cinematography and dynamic pressure measurements. The duration of the fragmentation event is significantly shorter than that of the ejection event. The fragmentation of material precedes the acceleration of fragments. As a result of fragmentation, sub-parallel fractures are generated. The characteristic fragment size decreases as the initial pressure differential increases. The ejected fragments obtain velocities of 60 m/s. The mechanisms of material fragmentation during unloading and fragmentation wave propagation are discussed. The experimental results provide insight into the fragmentation dynamics of highly viscous magmas in which brittle failure at high strain rate is possible. Received: 23 July 1997 / Accepted: 23 November 1997  相似文献   
4.
Magma ascent, decompression-induced H2O exsolution and crystallization is now recognized as an important process in hydrous subduction zone magmas. During the course of such a process calculations suggest that the ascent rate of a degassing and crystallizing mafic magma will be greater than crystal settling velocities. Thus, any crystals formed as a consequence of volatile exsolution will remain suspended in the magma. If the magma erupts before the percentage of suspended crystals reaches the critical crystallinity value for mafic magma (~55 vol.%) it will produce the commonly observed crystal rich island arc basalt lava. If the magma reaches its critical crystallinity before it erupts then it will stall within the crust. Extension of compaction experiments on a 55 vol.% sand-Karo syrup suspension at different temperatures (and liquid viscosities) to the likely viscosities of interstitial andesitic to dacitic liquid within such a stalled magma suggest that small amounts (up to ~10%) can be expelled on a time scale of 1–10 years. The expelled liquid can create a new intermediate to silicic body of magma that is related to the original mafic magma via fractional crystallization. The short time scale for liquid expulsion indicate that decompression-induced H2O exsolution and crystallization can be an important mechanism for fractional crystallization. Based on this assumption a general model of decompression-induced crystallization and fractionation is proposed that explains many of the compositional, mineralogical and textural features of Aleutian (and other andesites).  相似文献   
5.
Long-term monitoring of wall paintings affected by soluble salts   总被引:1,自引:0,他引:1  
Long-term monitoring of wall paintings in historical monuments aims at clarifying involved decay processes and at the same time controlling effects of interventions for conservation. Monitored decay processes relate to the crystallisation of various salts – particularly of nitronatrite and gypsum – from hygroscopic solutions accumulated in the zone of ground moisture. The salts crystallise in response to climatic variations and other environmental changes. Measures for conservation such as protection from water infiltration, reduction of heating temperature and reduction of surface salt accumulation cause a significant slow-down but not a stop of decay. The particular dynamics and causes of remaining slow decay processes are described on three sites in Switzerland: the convent church of Müstair, the crypt in the cathedral of Basel and the crypt in the Grossmünster church of Zürich.  相似文献   
6.
Igneous rocks derived from high‐temperature, crystal‐poor magmas of intermediate potassic composition are widespread in the central Lachlan Fold Belt, and have been assigned to the Boggy Plain Supersuite. These rocks range in composition from 45 to 78% SiO2, with a marked paucity of examples in the range 65–70% SiO2, the composition dominant in most other granites of the Lachlan Fold Belt. Evidence is presented from two units of the Boggy Plain Supersuite, the Boggy Plain zoned pluton and the Nallawa complex, to demonstrate that these high‐temperature magmas solidified under a regime of convective fractionation. By this process, a magma body solidified from margin to centre as the zone of solidification moved progressively inwards. High‐temperature near‐liquidus minerals with a certain proportion of trapped interstitial differentiated melt, separated from the buoyant differentiated melt during solidification. In most cases much of this differentiated melt buoyantly rose to the top of the magma chamber to form felsic sheets that overly the solidifying main magma chamber beneath. Some of these felsic tops erupted as volcanic rocks, but they mainly form extensive high‐level intrusive bodies, the largest being the granitic part of the Yeoval complex, with an area of over 200 km2. Back‐mixing of fractionated melt into the main magma chamber progressively changed the composition of the main melt, resulting in highly zoned plutons. In the more felsic part of the Boggy Plain zoned pluton back‐mixing was dominant, if not exclusive, forming an intrusive body cryptically zoned from 63% SiO2 on the margin to 72% SiO2 in the core. It is suggested that tonalitic bodies do not generally crystallise through convective fractionation because the differentiated melt is volumetrically small and totally trapped within the interstitial space: back‐mixing is excluded and homogeneous plutons with essentially the composition of the parental melt are formed.  相似文献   
7.
Granulitized coesite-bearing eclogite from Weihai, northeastern part of the Shandong peninsula, eastern China was studied in detail to reveal the modification of mineral chemistry during decompression metamorphism. Considerable modification of chemical composition is recorded in clinopyroxene that occurs both as inclusions in garnet and as a matrix mineral. Careful examination of chemical variation with the change in microstructure made it possible to estimate the equilibrium composition of minerals at the coesite eclogite and garnet granulite stages. We were able to define three reference points on the PT path, namely, coesite eclogite (3 GPa, 660±40°C), granulite (1 GPa, 700±30°C) and amphibolite (0.9 GPa, 600±20°C). The path thus obtained is similar to those obtained by previous workers and supports nearly isothermal decompression of coesite eclogite.  相似文献   
8.
作者讨论了石墨转化为金刚石时的自由能变化和影响金刚石保存的物理化学因素。提出了复位效应这一概念,分析了释压速率、催化剂和水份等因素对金刚石保存的影响。人工合成金刚石的生产实践证实,在压力降低时,由于上述因素的影响,金刚石不稳定,并向石墨转化,金伯利岩中金刚石含矿性取决于多种因素:岩浆侵位的速度、冷凝速度、围岩水份以及岩浆化学成分。现有资料发明,金伯利岩体上部富金刚石,而往深部品位变贫且质量差,在一个岩管中往往中部富而边部渐贫。  相似文献   
9.
 The kinetics of hydrothermal crystallisation of sodium zeolites from a natural mixture of halloysite and amorphous silica with Si/Al ≈ 4 was investigated. The sample collected at Scarpara (Tuscania, Italy) is the final product of an intense hydrothermal alteration process on the pre-existing leucitic tufites. In order to enhance its reactivity in the NaOH solution, the sample was thermally activated at 600 °C for 1 h. The hydrothermal crystallisation sequence of zeolites formed in the range 90–150 °C has been followed using real-time synchrotron powder diffraction. The reaction kinetics of Na-X, Na-P and analcime were analysed using a model developed for the study of the kinetic data from X-ray diffraction experiments. Na-X and Na-P cocrystallize with an autocatalytic nucleation at lower isothermal temperatures and with a heterogeneous nucleation at higher isothermal temperatures. Na-X tends to dissolve before Na-P, which in turn transforms into analcime. This work is part of a general project on the kinetics of formation of zeolites from clay precursors which is important for either engineering and production of valuable industrial materials and for the interpretation of poorly understood processes of formation of zeolites in natural hydrothermal environments. Received: 7 November 2000 / Accepted: 19 March 2001  相似文献   
10.
Analytical models for decompressional bubble growth in a viscous magma are developed to establish the influence of high magma viscosity on vesiculation and to assess the time-scales on which bubbles respond to decompression. Instantaneous decompression of individual bubbles, analogous to a sudden release of pressure (e.g. sector collapse), is considered for two end-member cases. The infinite melt model considers the growth of an isolated bubble before significant bubble interaction occurs. The shell model considers the growth of a bubble surrounded by a thin shell and is analogous to bubble growth in a highly vesicular magmatic foam. Results from the shell model show that magmas less viscous than 109 Pa s can freely expand without developing strong overpressures. The timescales for pressure re-equilibration are shortened by increased ratios of bubble radius to shell thickness and by larger decompression. Time-scales for isolated bubbles in rhyolitic melts (infinite melt model) are significantly longer, implying that such bubbles could experience internal pressures greater than the ambient pressure for at least a few hours following a sudden release of pressure. The shell model is developed to assess bubble growth during the linear decompression of a magma body of constant viscosity. For the range of decompression rates and viscosities associated with actual volcanic eruptions, bubble growth continues at approximately the equilibrium rate, with no attendant excess of internal pressure. The results imply that viscosity does not have any significant role in preventing the explosive expansion of high viscosity foams. However, for viscosities of >109 Pa s there is the potential for a viscosity quench under the extreme decompression rates of an explosive eruption. It is proposed that the typical vesicularities of pumice of 0.7–0.8 are a consequence of the viscosity of the degassing magmas becoming sufficiently high to inhibit bubble expansion over the characteristic time-scale of eruption. For fully degassed silicic lavas with viscosities in the range 1010 to 1012 Pa s time-scales for decompression of isolated bubbles can be hours to many months.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号