首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   1篇
海洋学   3篇
  2017年   1篇
  2015年   1篇
  2011年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Three-dimensional seismic data and wireline logs from the western Niger Delta were analyzed to reveal the sedimentary and tectonic history of a major deltaic growth-fault depocenter comprising a kilometer-scale rollover anticline. The seismic units of the rollover show a non-uniform thickness distribution with their respective maximum near the main bounding growth-fault on the landward side of the system. This wedge-shaped sediment-storage architecture ultimately reflects the non-uniform creation of accommodation space in the study area that was controlled by 1) the differential compaction of the hanging-wall and footwall strata, 2) the lateral variation of fault-induced tectonic subsidence above the listric master fault, and possibly 3) local subsidence related to the subsurface movement of mobile shale reacting to loading and buoyancy. A sequential three-dimensional decompaction of the interpreted deltaic rollover units allowed to reconstruct and measure the compaction development of the rollover succession through time, documenting that sediment compaction contributed per depositional interval to between 25 and 35% of the generation of depositional space subsequently filled by deltaic sediments. The incremental decompaction of sedimentary units was further used to quantify the cumulative amount of accommodation space at and around the studied rollover that was created by fault movement, shale withdrawal, regional tectonic subsidence, isostasy and changes in sea level. If data on the regional subsidence and eustasy are available, the contribution of these basinwide controls to the generation of depositional space can be subtracted from the cumulative accommodation balance, which ultimately quantifies the amount of space for sediments to accumulate created by fault movement or shale withdrawal. This observation is important in that it implies that background knowledge on subsidence, stratigraphic age and sea-level changes allows to reconstruct and quantify fault movement in syn-tectonic deltaic growth successions, and this solely based on hanging-wall isopach trends independent of footwall information.  相似文献   
2.
Differential compaction plays a key role in influencing the palaeogeographic organisation of many depositional systems. In the Jurassic Walloon Subgroup, Surat Basin, Eastern Australia, the process of compensational stacking contributes significantly to the complex coal layer architecture and is documented in mine exposure, borehole and seismic datasets. Despite this understanding, current best-practices do not formally consider the mechanics of compensational stacking when populating palaeogeography facies in coal seam gas (CSG) reservoir models. To address this limitation, a hybrid modelling workflow was developed in which numerical rules representing the process of differential compaction are used explicitly to condition an iterative workflow containing traditional geostatistical facies modelling algorithms. The workflow is facilitated by a newly developed open source plugin which allows grid decompaction in Schlumberger PETREL™ 2015. Application of the workflow was tested in a CSG production area containing closely spaced wellbores and a 3D seismic survey. In this area, facies models were constructed using both traditional geostatistical approaches and the newly developed hybrid methodology. Comparison of these models suggests that facies models constructed via unconstrained geostatistical approaches often result in unrepresentative realisations, inconsistent with coal seam architectures as observed in seismic and outcrop. The hybrid geostatistical-forward modelling approach developed during this study was better able to reproduce complex alluvial stacking patterns, particularly with respect to coal seam amalgamation, bifurcation and washout.  相似文献   
3.
The analysis of basin dynamics and burial evolution requires a good understanding of sediment compaction. Classically, decompaction of sediments is performed in one dimension at a well location, using either a simple compaction/depth relationship or more complex elasto-plastic models. This paper presents a new approach combining sequential decompaction with 3D restoration to allow for a true 3D basin analysis. Decompaction is performed in 3D after each restoration step, thus taking into account possible tectonic events and lateral thickness variations. Care is taken to apply decompaction to ensure volume continuity especially around faults. This approach is particularly suitable for syn-depositional folds whose growth strata constrain tectonic evolution through time.The proposed approach is applied to the sand-rich turbiditic reservoir analogue of Annot (SE France) where two fictitious wells are used to compare the new 3D technique to a well decompaction analysis. Coupling restoration and decompaction leads to an improved assessment of the basin history: an uplift of the underlying units is identified, which was not detected using decompaction on wells only. Such differences may have a significant impact on possible hydrocarbon maturation models of the basin. Moreover, the geometry of the restored and decompacted models can better constrains the basin history, and influence our understanding of potential hydrocarbon migration pathways.  相似文献   
4.
F. F. Gorbatsevich   《Tectonophysics》2003,370(1-4):121-128
Within a geological massif in a stable geodynamical situation contacts on the grain boundaries in polycrystalline rocks at great depths are continuous and firm. The stress release of those rocks during drilling and excavation to the surface is accompanied by their disintegration (decompaction). The reason for the decompaction is generation of microcracks during stress release due to the difference between the elastic moduli of crystalline grains at their contacts. The mechanism of decompaction may occur not only in polymineral but in polycrystalline rocks as well. The method of decompaction evaluation of deep crystalline rocks under stress relief is presented. According to the calculations the initial manifestation of the decompaction effect in biotite gneisses will occur when they are extracted from the deep range of 0.8–1 km. The first microcracks arise on the grain borders between quartz–biotite and oligoclase–biotite. It is shown that the uplift of gneiss–granite varities of the rocks cut by the Kola superdeep borehole from depths exceeding 13–15 km will be possible in a form of separate mineral grains. Practical importance of the presented method is in an opportunity to evaluate the level of excavated decompaction. The method allow estimating the depth, from which the rock will be extracted only in a sludge form.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号