首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   11篇
  国内免费   19篇
大气科学   22篇
地球物理   14篇
地质学   37篇
海洋学   4篇
天文学   5篇
综合类   1篇
自然地理   2篇
  2022年   2篇
  2020年   2篇
  2019年   3篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   9篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1980年   1篇
排序方式: 共有85条查询结果,搜索用时 515 毫秒
1.
温度变化对夏季降温耗能的影响   总被引:12,自引:1,他引:12       下载免费PDF全文
该文采用降温度日数作为评估夏季降温耗能的指标 ,分析了我国夏季降温度日分布和长期变化特征。温度与降温耗能相关分析表明 ,两者相关密切 ,相关程度随气温升高而增加 ;降温耗能的 1℃效应量 ,北方大于南方。文章最后 ,利用气温距平与降温度日变率建立了夏季降温耗能评估模型。  相似文献   
2.
概述了同位素封闭体系内的矿物氧扩散和同位素交换机制及其在地质速率计上的应用。火成岩从高温冷却或变质岩从高峰主质温度冷却过程中,由于冷却速度不同,扩散作用导致的矿物晶体内部及晶粒间氧同位素再平衡也有所不同。通过实测岩石中各组成矿物氧同位素比值,模式含量和颗粒半径,据矿物氧扩散和同位素交换模型,可以估算出岩石的冷却速率。  相似文献   
3.
Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971–2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18–33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11–14% (for RCP2.6 and the shared socio-economic pathway (SSP)1, SSP2, SSP4) and 41–51% (RCP8.5–SSP3, SSP5) of the world population by the 2080s.  相似文献   
4.
The potential application of bio‐based ester oils for use as lubricants in metal working has been investigated for sustainable production processes in the future. When waste edible and animal fats came into focus as starting materials, it was already proven, that ester oils produced from plant fats performed very well as cooling lubricants. Waste fats were first characterized by analyzing and monitoring samples for one complete year. Inorganic and organic contaminations were found to be low and without seasonal variations. Fatty acid methyl esters (FAME) were produced by transesterification of the waste fats and they were separated into fractions with saturated FAME or unsaturated FAME by fractional crystallisation (winterisation). Further transesterification with 2‐ethylhexanol led to products that could be successfully tested as lubricants. The development of an extraction process aimed at the recycling of oil containing grinding mud by enabling the recirculation of lubricating oil and reutilization of oil‐free metal chips.  相似文献   
5.
The initial cooling of pahoehoe flow lobes   总被引:1,自引:0,他引:1  
 In this paper we describe a new thermal model for the initial cooling of pahoehoe lava flows. The accurate modeling of this initial cooling is important for understanding the formation of the distinctive surface textures on pahoehoe lava flows as well as being the first step in modeling such key pahoehoe emplacement processes as lava flow inflation and lava tube formation. This model is constructed from the physical phenomena observed to control the initial cooling of pahoehoe flows and is not an empirical fit to field data. We find that the only significant processes are (a) heat loss by thermal radiation, (b) heat loss by atmospheric convection, (c) heat transport within the flow by conduction with temperature and porosity-dependent thermal properties, and (d) the release of latent heat during crystallization. The numerical model is better able to reproduce field measurements made in Hawai'i between 1989 and 1993 than other published thermal models. By adjusting one parameter at a time, the effect of each of the input parameters on the cooling rate was determined. We show that: (a) the surfaces of porous flows cool more quickly than the surfaces of dense flows, (b) the surface cooling is very sensitive to the efficiency of atmospheric convective cooling, and (c) changes in the glass forming tendency of the lava may have observable petrographic and thermal signatures. These model results provide a quantitative explanation for the recently observed relationship between the surface cooling rate of pahoehoe lobes and the porosity of those lobes (Jones 1992, 1993). The predicted sensitivity of cooling to atmospheric convection suggests a simple field experiment for verification, and the model provides a tool to begin studies of the dynamic crystallization of real lavas. Future versions of the model can also be made applicable to extraterrestrial, submarine, silicic, and pyroclastic flows. Received: 26 November 1994 / Accepted: 1 December 1995  相似文献   
6.
The Early Cretaceous coal deposits of the Khasyn coalfield are intruded by Palaeogene diabase dikes. The coal has vitrinite reflectance values of 2.0–2.5% Ro, and characteristics of normal anthracite at some distance from the dikes, but at direct contact with the dike two morphological coal varieties occur: coal inclusions in the diabase dike and dispersed carbonaceous matter within the dike rock. Both types of coaly matter have properties typical of anthracites: strong anisotropy, altered internal structure and high vitrinite reflectance values ranging from 3.8 to 5.5% Ro. The X-ray diffraction measurements of the interplanar spacing d(002) and the crystallite sizes Lc and La show rather similar values for coal inclusions in the dike and dispersed carbonaceous matter. The additional reflection at 3.37 Å, corresponding to semi-graphite admixture, occurs in the coal and carbonaceous matter inside the dike and is absent in the natural coal outside the dike.  相似文献   
7.
We investigate the possibility of explaining the observed ripples in the X-ray gas in the Perseus and Virgo clusters through natural oscillations of a perturbed radio cocoon. Such a perturbation would result from an expanding overpressured cocoon of radio plasma overshooting its pressure equilibrium point with the cluster gas. The oscillations are heavily acoustically damped, and energy injection rates required to sustain them are consistent with observed AGN powers. Viscous dissipation of sound waves generated by these oscillations heats the cluster gas. By comparing our model with observations in Perseus and Virgo, we reproduce the observed ripple separations and amplitudes. Spitzer viscosity is largely sufficient in explaining the gas density profile, suggesting that thermal conductivity is likely to be heavily suppressed. In the central regions, viscous heating can suppress cooling flows on timescales exceeding the radio source lifetime.  相似文献   
8.
Thermoelectric generation contributes to 80% of global electricity production. Cooling of thermoelectric plants is often achieved by water abstractions from the natural environment. In England and Wales, the electricity sector is responsible for approximately half of all water abstractions and 40% of non-tidal surface water abstractions. We present a model that quantifies current water use of the UK electricity sector and use it to test six decarbonisation pathways to 2050. The pathways consist of a variety of generation technologies, with associated cooling methods, water use factors and cooling water sources. We find that up to 2030, water use across the six pathways is fairly consistent and all achieve significant reductions in both carbon and water intensity, based upon a transition to closed loop and hybrid cooling systems. From 2030 to 2050 our results diverge. Pathways with high levels of carbon capture and storage result in freshwater consumption that exceeds current levels (37–107%), and a consumptive intensity that is 30–69% higher. Risks to the aquatic environment will be intensified if generation with carbon capture and storage is clustered. Pathways of high nuclear capacity result in tidal and coastal abstraction that exceed current levels by 148–399%. Whilst reducing freshwater abstractions, the marine environment will be impacted if a shortage of coastal sites leads to clustering of nuclear reactors and concentration of heated water discharges. The pathway with the highest level of renewables has both lowest abstraction and consumption of water. Freshwater consumption can also be minimised through use of hybrid cooling, which despite marginally higher costs and emissions, would reduce dependence on scarce water resources thus increase security of supply.  相似文献   
9.
以中国华北地区五大城市办公建筑为例,利用1961—2017年气象数据和TRNSYS软件模拟的供热制冷负荷数据,评估了气候变化背景下华北地区建筑供热制冷负荷的变化。在此基础上,对模拟负荷和气象要素进行多元线性逐步回归分析,揭示了影响建筑供热、制冷负荷的主要气象因子。结果表明:1961—2017年中国华北五大城市供热负荷均呈下降趋势,降幅为0.05(石家庄)—0.13 kWh·m-2·(10 a)-1(呼和浩特);各城市制冷负荷的变化不同,仅呼和浩特为增多,增幅为0.04 kWh·m-2·(10 a)-1,其余城市制冷负荷无明显变化;从总负荷来看,各城市均呈下降趋势,降幅为0.05(太原)—0.10 kWh·m-2·(10 a)-1(呼和浩特)。由供热制冷负荷与气象要素的回归分析可知,冬季供热负荷主要受气温影响,五大城市的显著增温导致供热负荷减少;与此不同,夏季制冷负荷主要受气温、太阳辐射的共同影响,呼和浩特平均气温和太阳辐射均呈显著上升趋势,导致其制冷负荷显著增加。其他城市气温显著升高,而太阳辐射显著降低,二者的综合作用导致制冷负荷没有明显的变化趋势。总体来看,在气候变暖背景下,中国华北地区冬季供热负荷明显降低,而夏季制冷负荷并未明显增加,导致总负荷显著降低,气候变暖总体上对建筑节能有利。  相似文献   
10.
In order to simulate the plume produced by large natural draft cooling towers, a semi-spectral warm cloud parameterization has been implemented in an anelastic and non-hydrostatic 3D micro-scale meteorological code. The model results are compared to observations from a detailed field experiment carried out in 1980 at Bugey (location of an electrical nuclear power plant in the Rhône valley in East Central France) including airborne dynamical and microphysical measurements. Although we observe a slight overestimation of the liquid-water content, the results are satisfactory for all the 15 different cases simulated, which include different meteorological conditions ranging from low wind speed and convective conditions in clear sky to high wind and very cloudy. Such parameterization, which includes semi-spectral determination for droplet spectra, seems to be promising to describe plume interaction with atmosphere especially for aerosols and cloud droplets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号