首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
地质学   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有2条查询结果,搜索用时 531 毫秒
1
1.
Volcanic hazards from Pico de Orizaba volcano are presented here tor the first time. Some 1.3 million people live within the hazard zone, which in the most severe case would encompass the Mexican Gulf coast, east of the volcano. Three major cities located in the eastern part of the hazard zone account for 800 000 of this population and about 200 000 people live within a 20 km radius of the volcano. Probability calculations are presented as an attempt to quantify the hazards in the surroundings of the volcano. Such quantification can be of use in planning for future land use within the hazard zones.A zone of about 10 km radius centred on the top crater is a high hazard zone for gravity-driven flows and fallout ejecta. For large volume eruptions, the radius could be extended to 120 km to the east and 60 km to the west. The asymmetrical distribution is related to the topography of the volcano. Hazards from Pyroclastic-fall deposits are principally to the west of the volcano, since easterly winds are dominant in the area lava-flow hazards are greatest within a 10 km radius from the summit crater. Pyroclastic flow hazards are high up to 20 km from the volcano summit.In the case of reactivation of the volcano, melting of a glacier covering the summit of Pico de Orizaba having a volume equivalent to some 45 × 109 litres of water, would produce lahars which would descend the flanks of the volcano.  相似文献   
2.
The Late Pleistocene to Holocene eruptive history of Pico de Orizaba can be divided into 11 eurptive episodes. Each eruptive episode lasted several hundred years, the longest recorded being about 1000 years (the Xilomich episode). Intervals of dormancy range from millenia during the late Pleistocene to about 500 years, the shortest interval recorded in the Holocene. This difference could reflect either changes in the volcano's activity or that the older stratigraphic record is less complete than the younger. Eruptive mechanisms during the late Pleistocene were characterized by dome extrusions, lava flows and ash-and-scoria-flow generating eruptive columns. However, in Holocene time plinian activity became increasingly important. The increase in dacitic plinian eruptions over time is related to increased volumes of dacitic magma beneath Pico de Orizaba. We suggest that the magma reservoir under Pico de Orizaba is stratified. The last eruptive episode, which lasted from about 690 years bp until ad 1687, was initiated by a dacitic plinian eruption and was followed by effusive lava-forming eruptions. For the last 5,000 years the activity of the volcano has been gradually evolving towards such a trend, underlining the increasing importance of dacitic magma and stratification of the magma reservoir. Independent observations of Pico de Orizaba's glacier early this century indicate that some increase in volcanic activity occurred between 1906 and 1947, and that it was probably fumarolic.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号