首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   3篇
地球物理   1篇
地质学   10篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   

2.
3.
TECTONIC EVOLUTION OF THE YANGTZE PASSIVE MARGIN AND SONGPAN GARZ? FOLD BELT, CHINA  相似文献   
4.
We report Permian (ca. 272 Ma ±5.4 Ma) felsic dykes that intrude into the Neoproterozoic (ca. 750 Ma) magmatic suite of the Nagar Parkar Igneous Complex (NPIC), the western extension of the Malani Igneous Suite (MIS). The NPIC consists of Neoproterozoic basement amphibolites and granites (riebeckite–aegirine gray granites and the biotite–hornblende pink granites), all of which are intruded by several generations of mafic and felsic dykes. Granitic magmatism occurred in the Late Neoproterozoic (ca. 750 Ma) due to the subduction‐, followed by the rift‐related tectonic regime during the breakup of the Rodinia supercontinent. U–Th–Pb zircon and monazite CHIME age data of 700–800 Ma from the earlier generation porphyritic felsic dykes suggest the dyke intrusion was coeval or soon after the emplacement of the host granites. Our findings of Permian age orthophyric felsic dykes provide new insights for the prevalence of active tectonics in the MIS during late Paleozoic. Textural features and geochemistry also make the orthophyric dykes distinct from the early‐formed porphyritic dykes and the host granites. Our newly obtained age data combined with geochemistry, suggest the existence of magmatism along the western margin of India (peri‐Gondwana margin) during Permian. Like elsewhere in the region, the Permian magmatism in the NPIC could be associated with the rifting of the Cimmerian micro‐continents from the Gondwana.  相似文献   
5.
The Cimmerian terrane forms an almost unbroken chain stretching >13,500 km, from central southern Europe to western Indonesia, via SE Europe, the Middle East, Afghanistan, Tibet, SW China and Myanmar. Ar-guably, it is Earth’s most spectacular example of a “sliver” terrane, dwarfing in size more recently devel-oped examples, for instance the Palawan Block in the western Philippines, and the Lord Howe Rise in the Tasman Sea. The presentation will first outline the in-triguing geological features associated with this unique tectonic entity. Following that, recently obtained results following paleomagnetic investigations of two lower Permian rift-related basalt suites will be summarized (Abor Volcanics in northeastern India and Woniusi Ba-salts in Yunnan, China). The two studies are part of a larger programme of ongoing research aimed at deducing (I) the geodynamic configuration that generated the un-usual rifting system, and (II) exactly how Cimmeria fit-ted against Gondwana prior to its dispersal in the Early Permian. The critical unit is Baoshan, which we fit against Gondwana within a narrow longitudinal belt close to where northern India and northwestern Australia were once in close proximity (Fig. 1). Furthermore, we suggest that Sibumasu lay to directly the east, offshore of Australia; Qiangtang and Lhasa almost certainly sat to the west (off northern Greater India-SE Arabia), but we are uncertain as to their exact configuration. Our findings will be compared with several rather different models that have been published in recent years. The new pa-leomagnetic constraint highlights the flexibility authors currently have in reconstructing the region, principally because of the overall lack of similar high-quality data from the various blocks. We explain how new data could resolve these ambiguities, thereby offering more robust explanations for eastern Gondwana’s late Paleozoic de-velopment.  相似文献   
6.
Lemaire  M.M.  Westphal  M.  Gurevitch  E.L.  Nazarov  K.  Feinberg  H.  Pozzi  J.P. 《Geologie en Mijnbouw》1997,76(1-2):73-82
Calc-alkaline volcanic deposits from the south-west of the Turan plate, near the city of Turkmenbasi (40°00N, 52°58&\prime;E) in Turkmenistan, were studied paleomagnetically. These rocks have been affected by a greenschist-facies metamorphism, possibly of regional extent, that has been K/Ar-dated as 200 to 227 Ma old. A low-blocking-temperature component (D = 349°, I = 64°), close to the present field direction and probably of viscous or recent chemical origin, was isolated by a negative fold test at three sites. The mean direction of a high-blocking-temperature component isolated at 15 sites, mainly carried by magnetite, is scattered before and after tectonic correction and is therefore difficult to interpret. A group of seven sites with low inclinations before and after tectonic correction was isolated. The mean inclination of these sites (31 ± 8°), syn-folding or post-folding, corresponds to a paleolatitude of 17 ± 8° which is lower than the conventional Eurasian paleolatitudes for post-Permian times. The paleomagnetic data from the Turan and Iran plates constrain this low paleolatitude to the Late Triassic and Jurassic period. This requires a shortening of at least 7° between the Turan plate and Eurasia during this time.  相似文献   
7.
http://www.sciencedirect.com/science/article/pii/S1674987114000310   总被引:3,自引:0,他引:3  
This paper presents a compilation of recent U-Pb(zircon) ages of late Carboniferous—early Permian(LCEP) calc-alkaline batholiths from Iberia,together with a petrogenetic interpretation of magma generation based on comparisons with Mesozoic and Tertiary Cordilleran batholiths and experimental melts.Zircon U-Pb ages distributed over the range ca.315—280 Ma,indicate a linkage between calc-alkaline magmatism,Iberian orocline generation and Paleotethys subduction.It is also shown that Iberian LC-EP calcalkaline batholiths present unequivocal subduction-related features comparable with typical Cordilleran batholiths of the Pacific Americas active margin,although geochemical features were partially obscured by local modifications of magmas at the level of emplacement by country rock assimilation.When and how LC-EP calc-alkaline batholiths formed in Iberia is then discussed,and a new and somewhat controversial interpretation for their sources and tectonic setting(plume-assisted relamination) is suggested.The batholiths are proposed to have formed during the subduction of the Paleotethys oceanic plate(Pangaea self-subduction) and,consequently,they are unrelated to Variscan collision.The origin of the Iberian batholiths is related to the Eurasian active margin and probably represents the inception of a Paleotethyan arc in the core of Pangaea.  相似文献   
8.
We provide the first comprehensive picture of the thermochronometric evolution of the Cimmerian Strandja metamorphic massif of SE Bulgaria and NW Turkey, concluding that the bulk of the massif has escaped significant Alpine-age deformation. Following Late Jurassic heating, the central part of the massif underwent a Kimmeridgian-Berriasian phase of relatively rapid cooling followed by very slow cooling in Cretaceous-to-Early Eocene times. These results are consistent with a Late Jurassic–Early Cretaceous Neocimmerian (palaeo-Alpine) phase of north-verging thrust imbrication and regional metamorphism, followed by slow cooling/exhumation driven by erosion. From a thermochronometric viewpoint, the bulk of the Cimmerian Strandja orogen was largely unaffected by the compressional stress related to the closure of the Vardar–?zmir–Ankara oceanic domain(s) to the south, contrary to the adjacent Rhodopes. Evidence of Alpine-age deformation is recorded only in the northern sector of the Strandja massif, where both basement and sedimentary rocks underwent cooling/exhumation associated with an important phase of shortening of the East Balkan fold-and-thrust belt starting in the Middle–Late Eocene. Such shortening focused in the former Srednogorie rift zone because this area had been rheologically weakened by Late Cretaceous extension.  相似文献   
9.
The metamorphic rocks of the Neyriz area (Sanandaj–Sirjan zone) represent a Palaeozoic sequence, the upper part of which being palaeontologically dated from the Carboniferous and the Permian. Field structural analysis of the whole sequence, detailed in laboratory by microstructural one and 40K–40Ar dating carried on separated minerals, lead to establish that the whole sequence, from gneisses to Permian rocks, has suffered a unique synmetamorphic deformation, of variable intensity, marked by a foliation. Isotopic ages measured on extracted amphiboles and micas, clustered in four groups between 300 and 60 Ma, show the successive stages of their slow exhumation, which ended by the end of the Cretaceous. To cite this article: R. Sheikholeslami et al., C. R. Geoscience 335 (2003).  相似文献   
10.
西藏中部拉萨地块古生代、中生代的超层序研究   总被引:3,自引:0,他引:3  
识别划分了西藏南部拉萨地块 (措勤盆地 )古生代、中生代以海相为主的沉积地层相当于二级旋回的超层序11个 (CQ 111),其中早古生代 3个 (CQ 13),晚古生代 4个 (CQ 47),中生代 4个 (CQCQ 811);描述了各个超层序的特征;不仅在地块内进行了超层序对比,而且与印度北部边缘 (特提斯喜马拉雅 )显生宙的超层序进行了比较和讨论。研究表明,除早古生代外,藏南特提斯喜马拉雅和拉萨地块 (措勤盆地 )的超层序在数量、延时、结构方面极不相同,与所处地块构造背景和沉积盆地性质发生了变化有关。提出早古生代拉萨地块与印度次大陆同属冈瓦纳相区 (克拉通上的陆表海 ),晚古生代早期以后它们已不属同一大陆,整个晚古生代拉萨地块可能为冈瓦纳与劳亚大陆之间过渡带的一部分,中生代则成为Cimmeria次大陆的南部块体,冈瓦纳大陆在西藏境内的北界应为雅鲁藏布江缝合带。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号