首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4888篇
  免费   1028篇
  国内免费   1622篇
测绘学   104篇
大气科学   1352篇
地球物理   982篇
地质学   3399篇
海洋学   230篇
天文学   28篇
综合类   193篇
自然地理   1250篇
  2024年   71篇
  2023年   139篇
  2022年   254篇
  2021年   310篇
  2020年   313篇
  2019年   323篇
  2018年   272篇
  2017年   288篇
  2016年   242篇
  2015年   286篇
  2014年   341篇
  2013年   362篇
  2012年   325篇
  2011年   270篇
  2010年   265篇
  2009年   355篇
  2008年   326篇
  2007年   339篇
  2006年   380篇
  2005年   285篇
  2004年   228篇
  2003年   227篇
  2002年   202篇
  2001年   185篇
  2000年   164篇
  1999年   147篇
  1998年   116篇
  1997年   95篇
  1996年   101篇
  1995年   59篇
  1994年   55篇
  1993年   45篇
  1992年   37篇
  1991年   37篇
  1990年   31篇
  1989年   20篇
  1988年   14篇
  1987年   8篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1980年   1篇
  1978年   2篇
  1954年   4篇
排序方式: 共有7538条查询结果,搜索用时 9 毫秒
1.
The Mangshan Plateau is located on the south bank of the Huang He (Yellow River) just west of the city of Zhengzhou, well outside the Loess Plateau in central China. Mixing models of the grain‐size data indicate that the loess deposits are mixtures of three loess components. Comparison of the mixing model with existing models established for a series of loess–palaeosol sequences from the Loess Plateau indicates that the Mangshan loess has been supplied from a proximal dust source, the Huang He floodplain, during major dust outbreaks. The high accumulation rates, the composition of the loess components, and especially the high proportions of a sandy loess component support this. Owing to the exceptionally high accumulation rates, the Mangshan grain size, magnetic susceptibility and carbonate records provide a high‐resolution archive of environmental and climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
2.
本文针对冬半年高原低涡几个不同源地的低涡生成背景,着重分析500hpa环流场,指出:地形对低涡生成是非常重要的条件,但一定范围内有利的环境流场也是低涡生成不可缺少的外部条件。并给出了不同涡源区有利于低涡发生,发展的500hpa环流形势。  相似文献   
3.
4.
Afforestation has been suggested as a means of improving soil and water conservation in north‐western China, especially on the Loess Plateau. Understanding of the hydrological responses to afforestation will help us develop sustainable watershed management strategies. A study was conducted during the period of 1956 to 1980 to evaluate runoff responses to afforestation in a watershed on the Loess Plateau with an area of 1·15 km2, using a paired watershed approach. Deciduous trees, including locust (locusta L.), apricot (praecox L.) and elm (ulmus L.), were planted on about 80% of a treated watershed, while a natural grassland watershed remained unchanged. It was estimated that cumulative runoff yield in the treated watershed was reduced by 32% as a result of afforestation. A significant trend was also observed that shows annual runoff reduction increases with the age of the trees planted. Reduction in monthly runoff occurred mainly from June to September, which was ascribed to greater rainfall and utilization by trees during this period. Afforestation also resulted in reduction in the volume and peak flow of storm runoff events in the treated watershed with greater reduction in peak flow. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
5.
The southwest monsoon that dominated Central Himalaya has preserved loessic silt deposits preserved in patches that are proximal to periglacial areas. The occurrence of such silts suggests contemporary prevalence of cold and dry northwesterly winds. Field stratigraphy, geochemistry, mineral magnetism, infrared stimulated luminescence (IRSL) and radiocarbon dating has enabled reconstruction of an event chronology during the past 20 ka. Three events of loess accretion could be identified. The first two events of loess deposition occurred betweem 20 and 9 ka and were separated by a phase of moderate weathering. Pedogenesis at the end of this event gave rise to a well‐developed soil that was bracketed around 9 to > 4 ka. This was followed by the third phase of loess accretion that occurred around 4 to > 1 ka. Episodes of loess deposition and soil formation are interpreted in terms of changes in the strength of the Indian southwest monsoon. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
6.
中太平洋铁锰结壳铅同位素研究   总被引:5,自引:0,他引:5  
已有研究表明大洋中溶解的铅(Pb)来源于陆源物质,但是,对Pb进入大洋的途径争议很大。为此分析了取自中太平洋两块铁锰结壳样品的Pb同位素组成,获得了整个新生代的中太平洋Pb同位素演化历史。结果表明这两块结壳的Pb同位素随时间的演化曲线与中北太平洋沉积物岩心LL44-GPC3中风成碎屑的Pb同位素演化曲线相似。证实该区深水中的天然溶解铅主要来自风成粉尘,并且50Ma之前中太平洋中溶解Pb同位素组成主要取决于源自美洲的风成粉尘的输入,40Ma之后主要取决于源自亚洲的风成粉尘的输入。  相似文献   
7.
The Central Trough of the North Sea is not a simple rift graben. It is an elongated area of regional subsidence which was initiated in mid Cretaceous times and continued to subside through to the late Tertiary. Its form is not representative of pre-mid Cretaceous tectonics.In Late Permian times the North Sea was divided into a northern and southern Zechstein basin by the E-W trending Mid North Sea-Ringkøbing-Fyn High. The latter was dissected by a narrow graben trending NNW through the Tail End Graben and the Søgne Basin. The Feda Graben was a minor basin on the northern flank of the Mid North Sea High at this time. This structural configuration persisted until end Middle Jurassic times when a new WNW trend separated the Tail End Graben from the Søgne Basin. Right lateral wrench movement on this new trend caused excessive subsudence in the Tail End and Feda Grabens while the Søgne Basin became inactive.Upper Jurassic subsidence trends continued during the Early Cretaceous causing the deposition of large thicknesses of sediments in local areas along the trend. From mid Cretaceous times the regional subsidence of the Central Trough was dominant but significant structural inversions occurred in those areas of maximum Early Cretaceous and Late Jurassic subsidence.  相似文献   
8.
青藏高原东部多年冻土退化对环境的影响   总被引:3,自引:0,他引:3  
退化是本区多年冻土变化的基本趋势,不同区段退化幅度有差异,影响退化的因素除了全球气候转暖外,还有局地气候和地下水迳流。在退化敏感的地带,工程建设,牧区生态平衡都有不可忽视的影响。  相似文献   
9.
The oceanographic setting and the planktonic distribution in the coastal transition zone off Concepción (∼35-38°S, ∼73-77°W), an area characterized by its high biological production, were assessed during two different seasons: austral spring with equatorward upwelling favorable winds and austral winter with predominately northerly winds. Oceanographic and biological data (total chlorophyll-a, particulate organic carbon, microplankton, large mesozooplankton >500 μm as potential consumers of microplankton) were obtained during two cruises (October 1998, July 1999) together with satellite imagery for wind stress, geostrophic flow, surface temperature, and chlorophyll-a data. The physical environment during the spring sampling was typical of the upwelling period in this region, with a well-defined density front in the shelf-break area and high concentrations of surface chlorophyll-a (>5 mg m−3) on the shelf over the Itata terrace. During the winter sampling, highly variable though weakly upwelling-favorable winds were observed along with lower surface chlorophyll-a values (<2 mg m−3) on the shelf. In the oceanic area (>100 km from the coast), cyclonic and anti-cyclonic eddies were evident in the flow field during both periods, the former coinciding with higher chlorophyll-a contents (∼1 mg m−3) than in the surrounding waters. Also, a cold, chlorophyll-a rich filament was well defined during the spring sampling, extending from the shelf out to 350-400 km offshore. Along a cross-shelf transect, the micro- and meso-planktonic assemblages displayed higher coastal abundances during the spring cruise but secondary peaks appeared in the oceanic area during the winter cruise, coinciding with the distribution of the eddies. These results suggest that the mesoscale features in this region, in combination with upwelling, play a role in potentially increasing the biological productivity of the coastal transition zone off Concepción.  相似文献   
10.
对海水中Zn(Ⅱ),Ca(Ⅱ),Cd(Ⅱ)与高岭石、伊利石和蒙脱石等粘土矿物;无定形水合氧化铁、α-FeOOH等铁的水合氧化物;δ-MaO_2,γ-MnOOH,水锰矿等锰的水合氧化物等30个左右实验体系的液-固界面台阶型动力学曲线进行了系统的实验测定和全面的条件研究。在实验测定上提出两种方法、互为校核。对动力学曲线之台阶的消长和变化规律作了系统研究,确定主要影响因素是:金属离子初始浓度、固体交换剂量、体系的pH值和温度,以及搅拌速度等。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号