首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   21篇
  国内免费   69篇
测绘学   1篇
大气科学   6篇
地球物理   11篇
地质学   198篇
海洋学   19篇
综合类   7篇
自然地理   6篇
  2022年   1篇
  2021年   4篇
  2020年   8篇
  2019年   5篇
  2018年   9篇
  2017年   4篇
  2016年   15篇
  2015年   8篇
  2014年   14篇
  2013年   14篇
  2012年   5篇
  2011年   13篇
  2010年   6篇
  2009年   15篇
  2008年   11篇
  2007年   19篇
  2006年   19篇
  2005年   13篇
  2004年   15篇
  2003年   6篇
  2002年   2篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   8篇
  1997年   5篇
  1996年   4篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有248条查询结果,搜索用时 218 毫秒
1.
水泥粉煤灰加固有机质土的试验研究   总被引:3,自引:0,他引:3  
对于高有机质含量的泻湖相软土,单纯采用水泥不能有效提高该软土的力学性能,因此提出了采用水泥和粉煤灰作为固化剂的加固方法。通过不同水泥掺入量、粉煤灰掺入量和龄期下水泥土的无侧限抗压强度试验,分析了水泥粉煤灰固化土的强度规律和变形规律,探讨了水泥和粉煤灰加固高有机质含量软土的机理。结果表明,粉煤灰对于水泥试块的早期强度影响较小,对后期强度影响较大;粉煤灰最佳掺入量为12%,超过此掺入量水泥土强度反而会降低,粉煤灰水泥土的破坏应变、E50也在粉煤灰掺量为12%时分别达到最低值和最大值。水泥掺加粉煤灰可有效地提高高有机质含量软土的强度。  相似文献   
2.
以流线、流面、汇点的概念为基础,对稳定流双井干扰和直线隔水边界附近涌水量理论公式进行对比分析,提出了二个虚拟界面,其中虚拟界面Ⅰ,运用流线、流面的性质,流线方程等给出证明;虚拟界面Ⅱ则通过半无限条形降落漏斗的分析,应用元流和总流的能量方程得到流量为零,流线为零的平面。在同样条件下,条形无限涌水量是半无限潜含水层涌水量的二倍。应用总流能量方程对三种情况水头损失的分析,解释了这种关系存在的合理性,得出虚拟界面Ⅱ,并以此得出该界面内的最大残余水头计算公式。将基坑降水运用虚拟界面简化为扇形,条形半无限含水层,从而实现单井预测,该方法应用到昊华水泥厂基坑降水中,预测效果理想。  相似文献   
3.
Assuring safe disposal and long-term storage of radioactive and toxic wastes corresponds to a primary environmental task of present societies. To improve any technical limitation, a mechanistic understanding of the processes governing the binding of heavy metals and radionuclides is required. In this study, the significance of synchrotron-based X-ray microprobes for elucidating the spatial distribution and the speciation of radionuclides in highly heterogeneous waste repository materials will be outlined. A case study on the uptake process of Co in cementitious engineered barrier materials exposed to microbial degradation will be presented.  相似文献   
4.
The stochastic nature of the cyclic swelling behavior of mudrock and its dependence on a large number of interdependent parameters was modeled using Time Delay Neural Networks (TDNNs). This method has facilitated predicting cyclic swelling pressure with an acceptable level of accuracy where developing a general mathematical model is almost impossible. A number of total pressure cells between shotcrete and concrete walls of the powerhouse cavern at Masjed–Soleiman Hydroelectric Powerhouse Project, South of Iran, where mudrock outcrops, confirmed a cyclic swelling pressure on the lining since 1999. In several locations, small cracks are generated which has raised doubts about long term stability of the powerhouse structure. This necessitated a study for predicting future swelling pressure. Considering the complexity of the interdependent parameters in this problem, TDNNs proved to be a powerful tool. The results of this modeling are presented in this paper.  相似文献   
5.
In this study, a capillary barrier system was designed and tested for an arid land environment. To simulate arid land conditions of high temperature and sub-irrigation systems, the barrier was subjected to thermal and hydraulic gradients in opposite directions; to test the barrier system under these severe conditions, an experimental apparatus was designed and fabricated. The multilayer capillary barrier consisted of three layers made of silica sand, a mixture of sand and bentonite in equal portions, and a mixture of clay (25%) and aggregate (75%). Several one dimensional coupled heat and moisture tests were performed. Temperature variations along the thickness of the barrier were recorded as a function of time, and at the end of each test, the barrier was sliced into small sections, for the determination of volumetric water content as a function of distance from the heat source. The experimental results were discussed in view of the barrier's intended purpose of its ability to store moisture for long time durations. Coupled heat and moisture flow equations were developed and solved numerically via a finite difference method. Diffusivity parameters were calculated by using experimental results, a numerical model, and Powell's conjugate directions method of nonlinear optimization. The model was calibrated and the results were discussed. Good agreement between calculated and experimental results was obtained. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
6.
It is difficult to determine the bearing capacity of a foundation in unsaturated expansive soil, although this is most important. The bearing capacity of unsaturated expansive soil is related to the drying and wetting environment. Swelling pressure occurs when the soil volume change is constrained as an expansive soil is inundated. The expansive lateral pressure, induced by the swelling pressure is similar to the passive earth pressure. By considering the effect of the expansive lateral pressure in Terzaghi's bearing capacity formula, the bearing capacity of unsaturated expansive soil is derived. Because it is very difficult to measure suction in situ, the bearing capacity is expressed using the expansive lateral pressure offers a feasible approach to calculate the bearing capacity of a foundation in unsaturated expansive soil, when suction is not measured. Plate load tests to measure the bearing capacity in situ were performed for the foundation in natural soil and saturated soil immersed by water. The verification of the bearing capacity formulae presented in this paper is conducted by comparing the predicted results with the results of the plate load tests on unsaturated expansive soils in Handan and Bingxia, China.  相似文献   
7.
何元斌  李燕 《云南地质》2004,23(2):273-277
通过对深层水泥土搅拌桩的加固机理及复合地基承载力性状的简要分析,根据国家现行规范,结合具体地基处理工程实例,对深层水泥搅拌桩在软土地区地基加固处理中的方案选择、设计、施工及检测中的常见技术要点作初步探讨。  相似文献   
8.
The influence of microorganisms on mineral alteration is not easy to determine in environmental conditions, because of the difficulty to raise for comparison purposes an identical but abiotic system. Another problem in this context is the choice of reliable tracers to evaluate the alteration rate of materials during in vitro experiments. To face such difficulties, we elaborated a defined medium allowing both the growth of Pseudomonas aeruginosa and a precise measurement of the elements solubilized from the minerals. Thanks to this medium, we were able to quantitatively determine the amounts of major elements solubilized from the materials in the presence of bacterial growth, compared to a sterile system. Moreover, the analysis by ICP-MS of trace elements was possible after a chromatographic treatment, which selectively eliminated 99% of the sodium content of the medium. To cite this article: G. Aouad et al., C. R. Geoscience 337 (2005).  相似文献   
9.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
10.
A detailed multiscale analysis is presented of the swelling phenomenon in unsaturated clay-rich materials in the linear regime through homogenization. Herein, the structural complexity of the material is formulated as a three-scale, triple porosity medium within which microstructural information is transmitted across the various scales, leading ultimately to an enriched stress-deformation relation at the macroscopic scale. As a side note, such derived relationship leads to a tensorial stress partitioning that is reminiscent of a Terzaghi-like effective stress measure. Otherwise, a major result that stands out from previous works is the explicit expression of swelling stress and capillary stress in terms of micromechanical interactions at the very fine scale down to the clay platelet level, along with capillary stress emerging due to interactions between fluid phases at the different scales, including surface tension, pore size, and morphology. More importantly, the swelling stress is correlated with the disjoining forces due to electrochemical effects of charged ions on clay minerals and van der Waals forces at the nanoscale. The resulting analytical expressions also elucidate the role of the various physics in the deformational behavior of clayey material. Finally, the capability of the proposed formulation in capturing salient behaviors of unsaturated expansive clays is illustrated through some numerical examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号