首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
地球物理   7篇
地质学   37篇
海洋学   2篇
综合类   1篇
自然地理   8篇
  2017年   1篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2009年   4篇
  2008年   3篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
The Precipitation of carbonate cements in the Pobitite Kamani area (Lower Eocene) began during early diagenesis of sediments. There is evidence, however, that calcite is still forming today.The negative 13C values to –29.2 suggest that the carbonate formed during degradation of 12C-enriched organic matter (perhaps partly from oxidation of methane). The 18O values of –0.9 to –1.6 reflect the marine origin of the early diagenetic carbonate cements. Most of the carbonates, however, formed during late diagenesis (at approximately 1300 m burial depth) and/or recently (after uplift) from percolating groundwaters. These carbonates have an isotopic composition characteristic of carbonates which precipitated from meteoric waters under normal sedimentary temperatures in isotopic equilibrium with 12C-enriched soil carbon dioxide.  相似文献   
2.
Voluminous areas of advanced argillic alteration (AAA) constitute major exploration targets for surficial Cu–Au epithermal and potentially underlying porphyry-type deposits. In Bulgaria, more than 30 alunite occurrences are recognised, few of them being associated with a mineralised system. A mineralogical study combined with a stable isotopic (O, H, S) study has been carried out on nine alunite occurrences of advanced argillic zones hosted by volcanic rocks of Late Cretaceous age in the Srednogorie belt and of Oligocene age in the Rhodopes belt. This work was realised in order to constrain the origin of alunite and to define criteria to discriminate alunite from ore deposits and alunite from large barren alteration systems.Mineralogy of the nine occurrences consists of alunite + quartz + minor alumino-phospho-sulphates, associated with more or less kaolinite, dickite, pyrophyllite, diaspore and zunyite, depending on formation temperature. Alunite generally occurs as tabular crystals but is also present as fine-crystalline pseudocubic phases at Boukovo and Sarnitsa, in Eastern Rhodopes. In the advanced argillic alterations associated with economic ore, the presence of zunyite in the deeper parts indicates acid–fluorine–sulphate hydrothermal systems, whereas it is absent in uneconomic and barren advanced argillic alteration. All occurrences are formed at temperatures between 200 and 300 °C.(H, O, S) isotopic signatures of alunite combined with mineralogical features from all the studied occurrences, whatever their type, show characteristics of magmatic-hydrothermal systems. Sulphur data indicate essentially a magmatic origin for sulphur. Oxygen and hydrogen data suggest that hydrothermal fluids result from a mixing between magmatic fluids and an external component, which is identified as seawater-derived fluids or meteoric water in the vicinity of a sea. In most of the alunite occurrences, magmatic fluids are dominant and H2S/SO4 ratios are estimated to be higher than 2. Two exceptions exist in the Rhodopes. At Boukovo and Sarnitsa, where the estimated formation temperatures of alunite are the lowest, the external fluids are dominant and H2S/SO4ratios are estimated to be lower than or close to 1.At this stage of the work, the mineralogical and isotopic criteria do not enable a clear distinction between economic and uneconomic systems. However, some features are common in the economic ore deposits: the presence of zunyite in the deeper part of the system, the relatively high temperatures suggested by the zunyite + pyrophyllite + alunite + diaspore assemblages, the (O, H, S) signature of alunite, which is characteristic of dominant magmatic–hydrothermal acid–sulphate–fluorine systems.  相似文献   
3.
Drought in Bulgaria and atmospheric synoptic conditions over Europe   总被引:1,自引:0,他引:1  
Drought in Bulgaria is analyzed from the multiple viewpoints of statistical occurrence, spatial patterns, and synoptic conditions. A new index of drought, the SD (spatial-dryness) index, characterizes drought by both intensity and spatial extent. The occurrence of the SD index is analyzed using global gridded data sets. Examination of transitional probabilities of multiple months and years with drought occurrence suggests persistence is sufficiently frequent to be important for climate-related environmental planning. Finally, it is shown that specific seasonal synoptic patterns are associated with wet and dry conditions in Bulgaria. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
Diatoms, Cladocera, and chironomids preserved in the sediments of Lake Dalgoto were studied to reconstruct the history of the lake ecosystem in the context of the vegetation history as represented by the pollen stratigraphy. Younger Dryas silty sediments at the base of the core are characterized by low diversity of aquatic organisms. The transition to the Holocene is indicated by a sharp change from silt to clay-gyttja. The migration and expansion of trees at lower elevations between 10200 and 8500 14C-yr BP, along with higher diversities and concentrations of aquatic organisms and the decreased proportion of north-alpine diatoms, point to rapidly rising summer temperatures. After 6500 14C-yr BP the expansion of Pinus mugo in the catchment coincides with signs of natural eutrophication as recorded by an increase of planktonic diatoms. In the late Holocene (4000–0 14C-yr BP) Pinus peuce and Abies are reduced and Picea expands. Cereal grains and disturbance indicators suggest late-Holocene human modification of the vegetation.  相似文献   
5.
Structural analysis of low-grade rocks highlights the allochthonous character of Mesozoic schists in southeastern Rhodope, Bulgaria. The deformation can be related to the Late Jurassic–Early Cretaceous thrusting and Tertiary detachment faulting. Petrologic and geochemical data show a volcanic arc origin of the greenschists and basaltic rocks. These results are interpreted as representing an island arc-accretionary complex related to the southward subduction of the Meliata–Maliac Ocean under the supra-subduction back-arc Vardar ocean/island arc system. This arc-trench system collided with the Rhodope in Late Jurassic times. To cite this article: N.G. Bonev, G.M. Stampfli, C. R. Geoscience 335 (2003).  相似文献   
6.
Marin Bachvarov 《GeoJournal》1997,43(3):215-224
Although a constant trickle of outmigrants and several larger waves (mostly to Turkey) are characteristic for the modern history of Bulgaria, its ethnic composition was relatively stable. The ethnic Bulgarians are a clear majority, the largest minority groups being in descending order the Turks, Roma (Gypsies), the Muslim Bulgarians and several much smaller groups. The geographical patterns of distribution have been analysed. Over time, the policies of the Bulgarian state towards the minority groups have been varying between benevolence and restriction measures. The ethnocultural communities have worked out moduses of co-existence preventing the escalation of conflicts at the local level.  相似文献   
7.
Sequence stratigraphy of fluvial deposits is a controversial topic because changes in relative sea level will eventually have indirect impact on the spatial and temporal distribution of depositional facies. Changes in the relative sea level may influence the accommodation space in fluvial plains, and hence have impact on types of fluvial system, frequency of avulsion, and style of vertical and lateral accretion. This study aims to investigate whether depositional facies and changes in the fluvial system of the Lower Triassic Petrohan Terrigenous Group sandstones (NW Bulgaria) in response to changes in the relative sea level have an impact on the spatial and temporal distribution of diagenetic alterations.  相似文献   
8.
Several Mio-Pliocene aged lignite seams occur as part of a non-marine transgressive sequence in the Elhovo graben in south-eastern Bulgaria. The present study is focused on 45 samples collected from three boreholes in the eastern part of the basin. Petrographic data along with ash and sulphur contents were used in order to determine the lateral and vertical variations of the coal facies and depositional environment of the Elhovo lignite.The lignite seams accumulated in a rheotrophic, low-lying mire with high pH value and are characterized by high ash yields and sulphur contents. Despite of the neutral to weakly alkaline environment the bacterial activity was limited and the tissue preservation and gelification were mainly controlled by the redox conditions.Vegetation rich in decay resistant conifers dominated in the Elhovo basin together with mesophytic angiosperm species. The absence of algal remains and sapropelic coal indicated that open water areas were not present during peat accumulation. The latter processed in an environment, characterized by low subsidence rate, in which prior to the burial the woods were subjected to severe mechanical destruction. According to our interpretation, the enhanced impregnation of the tissues bacteria and fungi played only a secondary role in the process of humification. The lignite from borehole 122 and partly from BH 145 deposited in an environment characterized by relatively low (ground)water table, whereas to the south an area dominated by a flooded forest swamp (BH 104) formed. This is suggested by the better tissue preservation and gelification of the organic matter in BH 104. The vertical variation of the maceral composition in the studied lignite is interpreted as a consequence of vegetational changes, rather than to changes in the depositional environment. The low contents of inertinite macerals indicate that despite of the low water level the environment was relatively wet and the thermal and oxidative destruction of the tissues was limited.Peat accumulation was terminated by a major flooding event and a short term establishment of a lake. In contrast to the West Maritsa basin, no seam formed in the Elhovo basin during the filling stage of the lake.  相似文献   
9.
The geochemistry of trace elements in the underground and open-pit mine of the Goze Delchev subbituminous coal deposit have been studied. The coals in both mines are highly enriched in W, Ge and Be, and at less extent in As, Mn and Y as compared with the world-wide Clarkes for subbituminous coals. Ni and Ti are also enhanced in the underground coals, and Zr, Cr and Mo in the open-pit mine coals.Characteristic for the trace element contents in the deposit is a regular variation with depth. The following patterns were distinguished for profile I: a — the element content decreases from the bottom to the top of the bed paralleling ash distribution (Fe, Co, As, Sb, V, Y, Mo, Cs, REE, Hf, Ta, Th, P and Au); b — Ge and W are enriched in the near-bottom and near-top coals; c — in the middle part of the bed the content of K and Rb is maximal, while that of U is slightly enriched; d — Ba content decreases from the top to the bottom of the bed. In profile II, W and Be contents decrease from the bottom to the top. The near-bottom, and especially the near-roof samples of profile IV are highly enriched in Ge, while for W the highest is the content of the near-bottom sample.Ge, Be, As, Mn, Cl and Br are mainly organically associated. The organic affiliation is still strong for Co, B, Sr, Ba, Sb, U, Th, Mo, La, Ce, Sm, Tb and Yb in the underground coals, and Fe, Co, Na, W, Sr, Y and Ag in the coals from the open-pit mine. K, Rb, Ti, Zr, Hf and Ta are of dominant inorganic affinity. The chalcophile and siderophile elements correlate positively with Fe and each other and may be bound partly with pyrite or other sulphides and iron containing minerals.Compared statistically by the t-criteria, the elements Na, Li, Cu, Zn, Pb, Cr, Ni, Co, Mo, Fe and Be are of higher content in the open-pit mine. Tungsten is the only element of higher concentration in the underground mine. The contents of Ge, As, Sr, V, Mn, Y, Zr and P are not statistically different in both mines.It was supposed that there were multiple sources of the trace elements in the deposit. The source of the highly enriched elements (W, Ge, Be, and As) most probably were the thermal waters in the source area. The contemporary mineral springs are of high content of these elements. Another source were the hosting Mesta volcanic rocks, which are enriched in Sb, Mo, Hf, U, Th, As, Li and Rb. Some of the volcanics were hydrothermally altered and enriched or depleted of many elements. Thus, the hydrothermal solutions were also suppliers of elements for the coals. It is obvious that the contents, distribution and paragenesis, of the trace elements in both Goze Delchev coals reflect the geochemical specialization of the source area, including rocks, paleo- and contemporary thermal waters.  相似文献   
10.
The Chelopech deposit is one of the largest European gold deposits and is located 60 km east of Sofia, within the northern part of the Panagyurishte mineral district. It lies within the Banat–Srednegorie metallogenic belt, which extends from Romania through Serbia to Bulgaria. The magmatic rocks define a typical calc-alkaline suite. The magmatic rocks surrounding the Chelopech deposit have been affected by propylitic, quartz–sericite, and advanced argillic alteration, but the igneous textures have been preserved. Alteration processes have resulted in leaching of Na2O, CaO, P2O5, and Sr and enrichment in K2O and Rb. Trace element variation diagrams are typical of subduction-related volcanism, with negative anomalies in high field strength elements (HFSE) and light element, lithophile elements. HFSE and rare earth elements were relatively immobile during the hydrothermal alteration related to ore formation. Based on immobile element classification diagrams, the magmatic rocks are andesitic to dacitic in compositions. Single zircon grains, from three different magmatic rocks spanning the time of the Chelopech magmatism, were dated by high-precision U–Pb geochronology. Zircons of an altered andesitic body, which has been thrust over the deposit, yield a concordant 206Pb/238U age of 92.21 ± 0.21 Ma. This age is interpreted as the crystallization age and the maximum age for magmatism at Chelopech. Zircon analyses of a dacitic dome-like body, which crops out to the north of the Chelopech deposit, give a mean 206Pb/238U age of 91.95 ± 0.28 Ma. Zircons of the andesitic hypabyssal body hosting the high-sulfidation mineralization and overprinted by hydrothermal alteration give a concordant 206Pb/238U age of 91.45 ± 0.15 Ma. This age is interpreted as the intrusion age of the andesite and as the maximum age of the Chelopech epithermal high-sulfidation deposit. 176Hf/177Hf isotope ratios of zircons from the Chelopech magmatic rocks, together with published data on the Chelopech area and the about 92-Ma-old Elatsite porphyry–Cu deposit, suggest two different magma sources in the Chelopech–Elatsite magmatic area. Magmatic rocks associated with the Elatsite porphyry–Cu deposit and the dacitic dome-like body north of Chelopech are characterized by zircons with ɛHfT90 values of ∼5, which suggest an important input of mantle-derived magma. Some zircons display lower ɛHfT90 values, as low as −6, and correlate with increasing 206Pb/238U ages up to about 350 Ma, suggesting assimilation of basement rocks during magmatism. In contrast, zircon grains in andesitic rocks from Chelopech are characterized by homogeneous 176Hf/177Hf isotope ratios with ɛHfT90 values of ∼1 and suggest a homogeneous mixed crust–mantle magma source. We conclude that the Elatsite porphyry–Cu and the Chelopech high-sulfidation epithermal deposits were formed within a very short time span and could be partly contemporaneous. However, they are related to two distinct upper crustal magmatic reservoirs, and they cannot be considered as a genetically paired porphyry–Cu and high-sulfidation epithermal related to a single magmatic–hydrothermal system centered on the same intrusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号