首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
地球物理   3篇
地质学   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  1995年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
A method for the trace-level determination of bromate in raw and drinking water is reported. The procedure combines the quantitation of bromate by ion chromatography with a concentration step which in the main is composed of an unselective enrichment of all water constituents by means of a rotatory evaporator and a selective removal of the chloride ions. With this method, the reliable determination of bromate in raw and drinking waters is possible down to concentrations of at least 1 μg/L. The method is used for systematic examinations in several German waterworks which use ozone for the preparation of drinking water. The resulting data clearly prove that during the ozonation of bromide-containing waters, bromate is produced, whereby the concentration of bromate in the ozonated raw water can exceed 10 μg/L. Some correlations between the amount of bromate and the respective conditions of ozonation are pointed out.  相似文献   
3.
4.
A method for the detection of bromate and bromide in drinking water by ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) was developed. The optimized conditions of IC including pH and concentration of the effluent were studied. The results showed that the above two species of bromine were baseline separated within nine minutes under the optimized conditions. The detection limits (S/N=3) of bromate and bromide were 0.23 and 0.12 μg/L, respectively. The RSD (n=6) of the peak areas was 1.2%-3.5%. The method has been successfully applied to the determination of the type bromide in drinking water samples. The recoveries were 95%-109%. The method can be used for the regular analysis of bromate and bromide in real drinking water samples.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号