首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2017年   1篇
  2016年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
The study area covered by this work is located along the Bir Tawilah fault zone which encompasses the Arabian Shield between Afif terrane and western oceanic terranes. The rocks are dominantly ophiolite assemblages, island arc metavolcanic and metasedimentary rocks, and dioritic to granitic intrusions. The diorite and granodiorite rocks are I-type granitoids, calk-alkaline, metaluminous to peraluminous, formed in a volcanic arc setting, whereas the monzogranite is classified as A-type granite, alkaline and highly fractionated calc-alkaline, generated in within-plate tectonic setting. Nb and Y relationships indicated that the diorites and granodiorites were generated by a mafic parental magma contaminated with crustal materials, and controlled by fractional crystallization, whereas the monzogranites were generated from a magma characterized by an enriched mantle (EM) source.Mineralization including gold is hosted by the carbonatized serpentinite (listvenite) and the syn-tectonic granodiorite along Bir Tawilah thrust zone. U-Pb zircon geochronology indicates that the granodiorite at Jabal Ghadarah is emplaced at ca. 630 ± 12 Ma, probably suggests that the metallic minerals associated with the granodiorite along Bir Tawilah thurst zone are the result of remobilization of pre-existing gold mineralization associated with listevenite that is related to arc accretion.  相似文献   
2.
The Bir Tuluha ophiolite is one of the most famous chromitite-bearing occurrences in the Arabian Shield of Saudi Arabia, where chromitite bodies are widely distributed as lensoidal pods of variable sizes surrounded by dunite envelopes, and are both enclosed within the harzburgite host. The bulk-rock geochemistry of harzburgites and dunites is predominately characterized by extreme depletion in compatible trace elements that are not fluid mobile (e.g., Sr, Nb, Ta, Hf, Zr and heavy REE), but variable enrichment in the fluid-mobile elements (Rb and Ba). Harzburgites and dunites are also enriched in elements that have strong affinity for Mg and Cr such as Ni, Co and V. Chromian spinels in all the studied chromitite pods are of high-Cr variety; Cr-ratio (Cr/(Cr + Al) atomic ratio) show restricted range between 0.73 and 0.81. Chromian spinels of the dunite envelopes also show high Cr-ratio, but slightly lower than those in the chromitite pods (0.73–0.78). Chromian spinels in the harzburgite host show fairly lower Cr-ratio (0.49–0.57) than those in dunites and chromitites. Platinum-group elements (PGE) in chromitite pods generally exhibit steep negative slopes of typical ophiolitic chromitite PGE patterns; showing enrichment in IPGE (Os, Ir and Ru), over PPGE (Rh, Pt and Pd). The Bir Tuluha ophiolite is a unimodal type in terms of the presence of Ru-rich laurite, as the sole primary platinum-group minerals (PGM) in chromitite pods. These petrological features indicates that the Bir Tuluha ophiolite was initially generated from a mid-ocean ridge environment that produced the moderately refractory harzburgite, thereafter covered by a widespread homogeneous boninitic melt above supra-subduction zone setting, that produced the high-Cr chromitites and associated dunite envelopes. The Bir Tuluha ophiolite belt is mostly similar to the mantle section of the Proterozoic and Phanerozoic ophiolites, but it is a “unimodal” type in terms of high-Cr chromitites and PGE-PGM distribution.  相似文献   
3.
30 km southwest of Tunis, two thin flaky ‘Triassic’ intrusions underline the two flanks of the Atlasic anticline of Bir Afou. These evaporites are interbedded within the Clansayesian shales, and are under and overlain by glauconitic conglomeratic contacts. The ‘Triassic’ flakes, topic of our study, are sourced from the Bir Afou Triassic mass after a rapid pouring out during Late Aptian extensional tectonics. This structure corresponds, for us, to a ‘salt glacier’, similar to that one described at Ben Gasseur by Vila and al. [J.M. Vila, M. Ben Youssef, M. Chikhaoui, M. Ghanmi, Bull. Soc. géol. France 167 (1996) 235–246], which was subsequently folded during Lower Eocene times. Middle and Upper Eocene transgressive formations unconformably deposited on top of the Aptian anticlinal hinge. The major Late Miocene compressive phase is responsible for the present structures and that are superimposed onto the pre-existing ‘salt glacier’. This salifereous system extends the ‘salt glacier’ domain towards the eastern part of the Tunisian Atlas. To cite this article: M. Ben Chelbi et al., C. R. Geoscience 338 (2006).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号