首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
地质学   5篇
  2018年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2000年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Eclogite-facies rocks within the Bergen Arcs, western Norway, have formed from granulites along shear zones and fluid pathways. Garnets that were inherited from granulite facies protoliths show different types of replacement patterns due to an incomplete eclogitisation process including concentric rim zoning, zoning along vein fillings and inclusion trails, and zoning bands without inclusions. The interfacial part between the granulitic core and the eclogitic rim of garnet as well as the microstructure of other relevant minerals (omphacite, plagioclase) has been analysed using analytical transmission electron microscopy (ATEM). In garnet, the interface is characterised by gradual changes in composition from Xalm=0.31, Xpyr=0.50 to Xalm=0.54, and Xpyr=0.25 within ≈20 μm and exhibits no distinct change in microstructure. Granulitic plagioclase shows exsolution lamellae of the Bøggild intergrowth. In omphacite, anti-phase domains (APDs) which potentially record the temperature of cation ordering after mineral growth have been observed and their size suggest eclogitisation at 600–700 °C. The electron backscatter diffraction (EBSD) analysis revealed that the lattice orientation of the granulitic feldspar is basically unrelated to tectonic axes whereas newly formed eclogitic minerals omphacite and kyanite show a crystallographic relation to the foliation. In garnet, no change in the basic crystallographic orientation between the eclogitic and granulitic garnet composition was confirmed. However, misorientation analysis suggests a cellular microstructure not more than 1° misorientation in the core of the garnets, which is missing in the eclogitic rim indicating textural equilibration of the latter. The heterogeneous replacement patterns are characteristic for dissolution and re-precipitation reactions in an open system limited to fluid availability. The appearance of the compositional profile in garnet is interpreted as a diffusional re-equilibration step after the time-limited, fluid-mediated eclogitisation event that apparently obscured the initially sharp interface within the further retrograde metamorphic history.  相似文献   
2.
Exhumed eclogitic crust is rare and exposures that preserve both protoliths and altered domains are limited around the world. Nominally anhydrous Neoproterozoic anorthositic granulites exposed on the island of Holsnøy, in the Bergen Arcs in western Norway, preserve different stages of progressive prograde deformation, together with the corresponding fluid‐assisted metamorphism, which record the conversion to eclogite during the Ordovician–Silurian Caledonian Orogeny. Four stages of deformation can be identified: (1) brittle deformation resulting in the formation of fractures and the generation of pseudotachylites in the granulite; (2) development of mesoscale shear zones associated with increased fluid–rock interaction; (3) the complete large‐scale replacement of granulite by hydrous eclogite with blocks of granulite sitting in an eclogitic “matrix”; and (4) the break‐up of completely eclogitized granulite by continued fluid influx, resulting in the formation of coarse‐grained phengite‐dominated mineral assemblages. P–T constraints derived from phase equilibria forward modelling of mineral assemblages of the early and later stages of the conversion to eclogite document burial and partial exhumation path with peak metamorphic conditions of ~21–22 kbar and 670–690°C. The P–T models, in combination with existing T–t constraints, imply that the Lindås Nappe underwent extremely rapid retrogressive pressure change. Fluid infiltration began on the prograde burial path and continued throughout the recorded P–T evolution, implying a fluid source that underwent progressive dehydration during subduction of the granulites. However, in places limited fluid availability on the prograde path resulted in assemblages largely consuming the available fluid, essentially freezing in snapshots of the prograde evolution. These were carried metastably deeper into the mantle with strain and metamorphic recrystallization partitioned into areas where ongoing fluid infiltration was concentrated.  相似文献   
3.
A. Kühn  J. Glodny  K. Iden  H. Austrheim 《Lithos》2000,51(4):423-330
The Lindås Nappe, Caledonides W-Norway was affected by two major tectonometamorphic events. A Precambrian granulite facies event at T=800–900°C, P<10 kbar was followed by localized Caledonian eclogite facies (T=650–700°C and P>15 kbar) and localized amphibolite facies reworking. During the granulite–eclogite facies transition, anorthositic rocks were converted from garnet granulites to kyanite eclogites, while phlogopite-bearing spinel lherzolite reacted to garnet lherzolite. The eclogite and amphibolite facies reequilibration took place along shear zones and fluid pathways. In the unhydrated and undeformed parts, the minerals preserved their granulite facies composition with constant Fe/Mg ratios from core to rim, suggesting diffusional reequilibration. Rb/Sr age dating was carried out on relict granulite facies minerals from three lenses of ultramafites (Alvfjellet, Hundskjeften and Kvamsfjellet). Phlogopite from phlogopite lherzolite at Alvfjellet give 857±9 Ma, while clinopyroxene, amphibole, phlogopite and whole rock from a lherzolite at Hundskjeften yield an age of 842±12 Ma (MSWD=1.9). Clinopyroxene, feldspar, orthopyroxene phlogopite and whole rock from websterite, Kvamsfjellet, yield an age of 835±7 Ma (MSWD<1), while clinopyroxene, phlogopite and whole rock from a lherzolite from the same lens gives a result of 882±9 Ma. These results are interpreted as minimum ages for the granulite facies event and only slightly younger than, or overlap with previous U–Pb zircon ages (929±1 Ma) and Sm–Nd garnet–pyroxene ages (890–923 Ma) interpreted to date the end of the granulite facies event. By contrast, ages obtained for the eclogite and amphibolite facies range from 460 (U–Pb, sphene), 440 (Ar–Ar), 419 (U–Pb, zircon) to 410 Ma (Rb/Sr mineral ages).

These results demonstrate that the reopening temperature for the Rb/Sr system in phlogopite–biotite under dry and static high-pressure conditions is, in the given mineral assemblages, at least 650°C, considerably higher than the 300–400°C assumed as the closure temperature of this system. We ascribe this elevated reopening temperature to fluid absent conditions that prevented element transport and rehomogenization.  相似文献   

4.
Until now, no satisfactory geodynamic model has been delivered concerning the three main West African orogens: Panafrican 1 (Bassaride belt), Panafrican 2 (Rokelide belt) and Hercynian (Mauritanide belt). However, since the last synthetic paper (Villeneuve, 2008), new geological, geophysical and geochronological data, from the Moroccan Sahara to Sierra Leone, allow us to propose a new geodynamical model. It includes the two Panafrican events in a single model very similar to the present western Pacific margin. An old “West African Neoproterozoic ocean” (WANO) was limited by a set of island arcs separated from the West African craton by a series of “back arc basins”. The closure of this first round of back arc basins around 650 Ma led to the Bassaride belt (Panafrican 1). Then the WANO was subducting underneath the island arcs (between 650 and 550 Ma) meanwhile a new generation of “back arc basins” opened to the east between the arcs and the craton margin. The closure of the WANO and associated island arcs and back arc basins (550 to 500 Ma) led to the Rokelide belt (Panafrican 2). The Hercynian structures involving a Palaeozoic cover (made with continental material) associated to a “greeenschist facies” metamorphism is ascribed to an intracontinental belt.  相似文献   
5.
Petrologic examination of coronites from the Bergen Arcs Complex in Norway revealed that garnet crowns formed due to clinopyroxene interaction with matrix plagioclase and spinel during the Grenville granulite-facies metamorphism (at T ~ 960°C and P = 1.3 GPa). Along with this, the rocks show evidence of reactions related to superimposed Caledonian eclogite-facies metamorphism. These are microscopic coronas consisting of omphacite, kyanite, corundum, amphibole, and biotite. The rims formed under aqueous conditions with potassium introduction ata T ~ 710–730°C and P ~ 1.3–1.5 GPa. Local occurrence of eclogite metamorphism found at a great distance (>100 m) from shear zones of the eclogite metamorphic stage indicates that the whole eclogite succession and not only its local sites (shear zones) were heated to the eclogite-metamorphism temperature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号