首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   2篇
  2024年   1篇
  2022年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Multifractal modeling is a mathematical method for the separation of a high potential mineralized background from a non-mineralized background. The Concentration-Distance to Fault structures (C-DF) fractal model and the distribution of the known iron (Fe) deposits/mines seen in the Esfordi and Behabad 1:100,000 sheets from the Bafq region of central Iran are used to distinguish Fe mineralization based on their distance to magnetic basement structures and surface faults, separately, using airborne geophysical data and field surveys. Application of the C-DF fractal model for the classification of Fe mineralizations in the Esfordi and Behabad areas reveals that the main ones show a correlation with their distance from magnetic basement structures. Accordingly, the distances of Fe mineralizations with grades of Fe higher than 55% )43% < Fe ≤ 60%) are located at a distance of less than 1 km, whereas for surfacial faults with grades of 43% ≤ Fe ≤ 60%, the distances are 3162< DF ≤ 4365 m from the faults. Thus, there is a positive relationship between Fe mineralization and magnetic basement structures. Also, the proximity evidence of Precambrian high-grade Fe mineralization related to magnetic basement structures indicates syn-rifting tectonic events. Finally, this C-DF fractal model can be used for exploration of magmatic and hydrothermal ore deposits.  相似文献   
2.
The Chadormalu is one of the largest known iron deposits in the Bafq metallogenic province in the Kashmar-Kerman belt, Central Iran. The deposit is hosted in Precambrian-Cambrian igneous rocks, represented by rhyolite, rhyodacite, granite, diorite, and diabasic dikes, as well as metamorphic rocks consisting of various schists. The host rocks experienced Na (albite), calcic (actinolite), and potassic (K-feldspar and biotite) hydrothermal alteration associated with the formation of magnetite–(apatite) bodies, which are characteristic of iron oxide copper-gold (IOCG) and iron oxide-apatite (IOA) systems. Iron ores, occurring as massive-type and vein-type bodies, consist of three main generations of magnetite, including primary, secondary, and recrystallized, which are chemically different. Apatite occurs as scattered irregular veinlets in various parts of the main massive ore-body, as well as apatite-magnetite veins and disseminated apatite grains in marginal parts of the deposit and in the immediate wall rocks. Minor pyrite occurs as a late phase in the iron ores. Chemical composition of magnetite is representative of an IOA or Kiruna-type deposit, which is consistent with other evidence.Whole rock geochemical data from various host rocks confirm the occurrence of Na, Ca, and K alteration consistent with the formation of albite, actinolite, and K-feldspar, respectively. The geochemical investigation also includes the nature of calc-alkaline igneous rocks, and helps elaborating on the spatial and temporal association, and possible contribution of mafic to felsic magmas to the evolution of ore-bearing hydrothermal fluids.Fluid inclusion studies on apatites from massive- and vein-type ores show a range of homogenization temperatures from 266 to 580 °C and 208–406 °C, and salinities from 0.5 to 10.7 wt.% and 0.3–24.4 wt.% NaCl equiv., respectively. The fluid inclusion data suggest the involvement of evolving fluids, from low salinity-high temperature, to high salinity-low temperature, in the formation of the massive- and vein-type ores, respectively. The δ34S values obtained for pyrite from various parts of the deposit range between +8.9 and +14.4‰ for massive ore and +18.7 to +21.5‰ for vein-type ore. A possible source of sulfur for the 34S-enriched pyrite would be originated from late Precambrian-early Cambrian marine sulfate, or fluids equilibrated with evaporitic sulfates.Field observations, ore mineral and alteration assemblages, coupled with lithogeochemical, fluid inclusion, and sulfur isotopic data suggest that an evolving fluid from magmatic dominated to surficial brine-rich fluid has contributed to the formation of the Chadormalu deposit. In the first stages of mineralization, magmatic derived fluids had a dominant role in the formation of the massive-type ores, whereas a later brine with higher δ34S contributed to the formation of the vein-type ores.  相似文献   
3.
The XV mafic-ultramafic intrusion is located in the western part of the Posht-e-Badam Block (PBB) within the Central Iranian Micro-Continent (CIMC). Petrographically, the intrusion is composed of gabbro and pyroxenite. Apatite U–Pb dating has established the crystallization age of this intrusion to be 363 ± 67 Ma. The XV intrusive rocks are tholeiitic to slightly calc-alkaline in nature and are characterized by an enrichment of large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to high field strength elements (HFSE) and Heavy Rare Earth Elements (HREE), respectively. The major oxide elements display continuous trends relative to SiO2. The 87Sr/86Sr(i) ratios range from 0.7045 to 0.7056, and the εNd(i) values range from 2.63 to 3.30. In addition, the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios exhibit a narrow range, varying from 18.68 to 18.70, 15.67 to 15.71, and 38.84 to 38.99, respectively. The geochemical and isotopic characteristics suggest that the parental magma was derived from a Sub- Continental Lithospheric Mantle (SCLM) that was modified by oceanic slab-derived components. The locations of the XV intrusive rocks in εNd(i) versus TDM (Ga) and Nb/La versus discrimination diagrams further support this conclusion. Fractional crystallization is identified as the dominant process influencing the formation of distinct lithological units within the XV intrusive rocks. Our newly presented isotopic and geochronological data, when considered in the regional context, suggest that the XV intrusive rocks were formed in an extensional tectonic setting. In this scenario, upwelling from the asthenospheric mantle induced heating, leading to the melting of previously subduction-modified SCLM. Comparative analysis with previously published ages indicates that extensional magmatism in the PBB continued into the Middle Paleozoic.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号