首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4975篇
  免费   1508篇
  国内免费   2267篇
测绘学   133篇
大气科学   4666篇
地球物理   1142篇
地质学   1407篇
海洋学   204篇
天文学   114篇
综合类   199篇
自然地理   885篇
  2024年   70篇
  2023年   135篇
  2022年   229篇
  2021年   293篇
  2020年   307篇
  2019年   387篇
  2018年   268篇
  2017年   329篇
  2016年   263篇
  2015年   350篇
  2014年   430篇
  2013年   528篇
  2012年   455篇
  2011年   425篇
  2010年   310篇
  2009年   389篇
  2008年   364篇
  2007年   465篇
  2006年   380篇
  2005年   331篇
  2004年   255篇
  2003年   239篇
  2002年   186篇
  2001年   190篇
  2000年   190篇
  1999年   139篇
  1998年   144篇
  1997年   116篇
  1996年   101篇
  1995年   87篇
  1994年   90篇
  1993年   67篇
  1992年   42篇
  1991年   41篇
  1990年   23篇
  1989年   29篇
  1988年   29篇
  1987年   5篇
  1986年   9篇
  1985年   12篇
  1984年   5篇
  1983年   1篇
  1982年   10篇
  1981年   3篇
  1980年   14篇
  1979年   2篇
  1978年   8篇
  1977年   5篇
排序方式: 共有8750条查询结果,搜索用时 15 毫秒
1.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   
2.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
3.
The precipitation patterns in flood season over China associated with the El Niño/Southern Oscillation (ENSO) are investigated, especially in the eastern China, using the rather long period rainfall data in this century. The results show that there were remarkable differences between the precipitation patterns in flood seasons of ENSO warm phase (El Niño year) and cold phase (La Niña year), as well as between the patterns in El Niño years and their following years. The most parts of China received below normal rainfall in flood season of the onset years of El Niño events, but the coastal area of Southeast China received above normal amounts. Comparatively, the most parts of China received above normal rainfall in flood season of the following years of El Niño events, but the eastern part of the reaches among the Huanghe (Yellow) River, the Huaihe River and the Haihe River, and the Northeast China received less. During ENSO cold phase, the reaches of the Changjiang (Yangtze) River and the North China received more amounts than normal rainfall in flood season of the onset years of La Niña events, and the other regions of China received less. In the following years of La Niña events, the coastal area of the Southeast China, the most part of the Northeast China and the regions between the Huanghe River and the Huaihe River received more precipitation during flood seasons, but the other parts received below normal precipitation.  相似文献   
4.
Abstract In the Twin Lakes area, central Sierra Nevada, California, most contact metamorphosed marbles contain calcite + dolomite + forsterite ± diopside ± phlogopite ± tremolite, and most calc-silicate hornfelses contain calcite + diopside + wollastonite + quartz ± anorthite ± K-feldspar ± grossular ± titanite. Mineral-fluid equilibria involving calcite + dolomite + tremolite + diopside + forsterite in two marble samples and wollastonite + anorthite + quartz + grossular in three hornfels samples record P± 3 kbar and T± 630° C. Various isobaric univariant assemblages record CO2-H2O fluid compositions of χCO2= 0.61–0.74 in the marbles and χCO2= 0.11 in the hornfelses. Assuming a siliceous dolomitic limestone protolith consisting of dolomite + quartz ° Calcite ± K-feldspar ± muscovite ± rutile, all plausible prograde reaction pathways were deduced for marble and hornfels on isobaric T-XCO2 diagrams in the model system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2. Progress of the prograde reactions was estimated from measured modes and mass-balance calculations. Time-integrated fluxes of reactive fluid which infiltrated samples were computed for a temperature gradient of 150 °C/km along the fluid flow path, calculated fluid compositions, and estimated reaction progress using the mass-continuity equation. Marbles and hornfelses record values in the range 0.1–3.6 × 104 cm3/cm2 and 4.8–12.9 × 104 cm3/cm2, respectively. For an estimated duration of metamorphism of 105 years, average in situ metamorphic rock permeabilities, calculated from Darcy's Law, are 0.1–8 × 10?6 D in the marbles and 10–27 × 10?6 D in the hornfelses. Reactive metamorphic fluids flowed up-temperature, and were preferentially channellized in hornfelses relative to the marbles. These results appear to give a general characterization of hydrothermal activity during contact metamorphism of small pendants and screens (dimensions ± 1 km or less) associated with emplacement of the Sierra Nevada batholith.  相似文献   
5.
The main reasons for the high content of inorganic N and its increase by several times in the Changjiang River and its mouth during the last 40 years were analysed in this work. The inorganic N in precipitation in the Changjiang River catchment mainly comes from gaseous loss of fertilizer N, N resulting from the increases of population and livestock, and from high temperature combustions of fossil fuels. N from precipitation is the first N source in the Changjiang River water and the only direct cause of high content of inorganic N in the Changjiang River and its mouth. The lost N in gaseous form and from agriculture non-point sources fertilizer comprised about 60% of annual consumption of fertilizer N in the Changjiang River catchment and were key factors controlling the high content of inorganic N in the Changjiang River mouth. The fate of the N in precipitation and other N sources in the Changjiang River catchment are also discussed in this paper.  相似文献   
6.
In recent years, high‐molecular‐weight anionic polyacrylamides (PAMs) have been tested on a variety of soils, primarily in temperate climates. However, little information is available regarding the effectiveness of PAM for preventing soil loss through runoff in tropical settings. Screening tests were performed using three negatively charged PAMs and one positively charged PAM on five Hawaii soils (two Oxisols, one Vertisol, and two Aridisols) to determine erosion loss, sediment settling, and aggregate stability. A laboratory‐scale rainfall simulator was used to apply erosive rainfall at intensities from 5 to 8·5 cm h?1 at various PAM doses applied in both dry and solution forms. Soil detachment due to splash and runoff, as well as the runoff and percolate water volumes, were measured for initial and successive storms. The impact of PAM on particle settling and aggregate stability was also evaluated for selected soil‐treatment combinations. Among the PAMs, Superfloc A‐836 was most effective, and significantly reduced runoff and splash sediment loss for the Wahiawa Oxisol and Pakini Andisol at rates varying between 10 and 50 kg ha?1. Reduced runoff and splash sediment loss were also noted for PAM Aerotil‐D when applied in solution form to the Wahiawa Oxisol. Significant reductions in soil loss were not noted for either the Lualualei Vertisol or the Holomua Oxisol. It is believed that the high montmorillonite content of the Lualualei Vertisol and the low cation‐exchange capacity of the Holomua Oxisol diminished the effectiveness of the various PAMs tested. The polymers were also found to enhance sediment settling of all soils and helped improve their aggregate stability. This screening study shows the potential use of PAM for tropical soils for applications such as infiltration enhancement, runoff reduction, and enhanced sedimentation of detention ponds. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
7.
This paper is a continuation of previous research, which obtained a convenient solution for arbitrary surface fluxes before ponding. By means of Fourier Transformation this has been extended to derive analytical solutions of a linearized Richards' equation for arbitrary input fluxes after surface saturation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
8.
Uranium-series dating of oxygen and carbon isotope records for stalagmite SJ3 collected in Songjia Cave, central China, shows significant variation in past climate and environment during the period 20-10 ka. Stalagmite SJ3 is located more than 1000 km inland of the coastal Hulu Cave in East China and more than 700 km north of the Dongge Cave in Southwest China and, despite minor differences, displays a clear first-order similarity with the Hulu and Dongge records. The coldest climatic phase since the Last Glacial Maximum, which is associated with the Heinrich Event 1 in the North Atlantic region, was clearly recorded in SJ3 between 17.6 and 14.5 ka, in good agreement in timing, duration and extent with the records from Hulu and Dongge caves and the Greenland ice core. The results indicate that there have been synchronous and significant climatic changes across monsoonal China and strong teleconnections between the North Atlantic and East Asia regions during the period 20-10 ka. This is much different from the Holocene Optimum which shows a time shift of more than several thousands years from southeast coastal to inland China. It is likely that temperature change at northern high latitudes during glacial periods exerts stronger influence on the Asian summer monsoon relative to insolation and appears to be capable of perturbing large-scale atmospheric/oceanic circulation patterns in the Northern Hemisphere and thus monsoonal rainfall and paleovegetation in East Asia. Climatic signals in the North Atlantic region propagate rapidly to East Asia during glacial periods by influencing the winter land-sea temperature contrast in the East Asian monsoon region.  相似文献   
9.
The imbalance between incoming and outgoing salt causes salinization of soils and sub-soils that result in increasing the salinity of stream-flows and agriculture land. This salinization is a serious environmental hazard particularly in semi-arid and arid lands. In order to estimate the magnitude of the hazard posed by salinity, it is important to understand and identify the processes that control salt movement from the soil surface through the root zone to the ground water and stream flows. In the present study, Malaprabha sub-basin (up to dam site) has been selected which has two distinct climatic zones, sub-humid (upstream of Khanapur) and semi-arid region (downstream of Khanapur). In the upstream, both surface and ground waters are used for irrigation, whereas in the downstream mostly groundwater is used. Both soils and ground waters are more saline in downstream parts of the study area. In this study we characterized the soil salinity and groundwater quality in both areas. An attempt is also made to model the distribution of potassium concentration in the soil profile in response to varying irrigation conditions using the SWIM (Soil-Water Infiltration and Movement) model. Fair agreement was obtained between predicted and measured results indicating the applicability of the model.  相似文献   
10.
Maps showing the potential for soil erosion at 1:100,000 scale are produced in a study area within Lebanon that can be used for evaluating erosion of Mediterranean karstic terrain with two different sets of impact factors built into an erosion model. The first set of factors is: soil erodibility, morphology, land cover/use and rainfall erosivity. The second is obtained by the first adding a fifth factor, rock infiltration. High infiltration can reflect high recharge, therefore decreasing the potential of surface runoff and hence the quantity of transported materials. Infiltration is derived as a function of lithology, lineament density, karstification and drainage density, all of which can be easily extracted from satellite imagery. The influence of these factors is assessed by a weight/rate approach sharing similarities between quantitative and qualitative methods and depending on pair-wise comparison matrix.The main outcome was the production of factorial maps and erosion susceptibility maps (scale 1:100,000). Spatial and attribute comparison of erosion maps indicates that the model that includes a measure of rock infiltration better represents erosion potential. Field investigation of rills and gullies shows 87.5% precision of the model with rock infiltration. This is 17.5% greater than the precision of the model without rock infiltration. These results indicate the necessity and importance of integrating information on infiltration of rock outcrops to assess soil erosion in Mediterranean karst landscapes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号