首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
地质学   4篇
  2017年   1篇
  2013年   2篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The identification and correlation of the Carboniferous-Permian (Gzhelian-Asselian) boundary within the sedimentary sequences of Gondwana has always been a topic of debate. Type latest Carboniferous and earliest Permian marine sequences are characterised by warm tropical faunas and come from the Uralian Region of Russia and Kazakhstan. Faunas include conodonts and fusulinid foraminiferids which are prime tools for correlation. Such faunal groups are absent from most Gondwanan sequences where reliance for correlations must be placed primarily on brachiopods, bivalve molluscs and palynology. The Western Australian marine sequences, with their contained ammonoids, provide a pivotal link for the dating and correlating of Early Permian Gondwanan sequences with those of the type regions and their palynostratigraphical record is essential for trans-Australian correlations and correlations elsewhere throughout Gondwanaland.New data from the fully cored DM Tangorin DDHl bore hole, drilled in the Cranky Corner Basin, New South Wales, Australia, reveals a sequence of descending faunal zones. The stratigraphically highest zone with Eurydesrna cordaturn, encompasses the Late Sakmarian (Sterlitamakian). The middle zone with Torniopsis elongata, Sulciplica c r a m and Trigonotreta tangorini straddles the Sterlitamakian-Tastubian boundary, with the palynomorphs Pseudoreticulatispora pseudoreticulata high in the zone and Granulatisporites confluens low in the zone. An impoverished fauna with Trigonotreta nov., low in the Granulatisporites confluens Zone, is probably of latest Asselian or Tastubian age.Significant new data from Argentina has revealed marine faunas from below the occurrence of Granulatisporites confluens. These are considered to be of Asselian age. Outcrops of the Tupe Formation, with a marine fauna, at La Herradura Creek in the western Paganzo Basin, San Juan Province, are best regarded as being of mid to late Asselian age. The Tupe Fauna has been recognised as the Tivertonia jachalensis-Streptorhynchus inaequiornatus Zone. Previously, this fauna was considered to be of Late Carboniferous or Stephanian age. Three faunal associations are known from the Rio del Peii6n Formation, Rio Blanco Basin, La Rioja Province. The middle assemblage with Tivertonia, Costaturnulus, Kochiproductus and Trigonotreta, appears to correlate well with the Tupe Formation fauna. The lower assemblage, with Streptorhynchus, Etherilosia, Costaturnulus, Trigonotreta and a punctate spiriferid, as well as indeterminate productids, probably of Early Asselian age. The youngest assemblage includes a species ofRhynchopora that is close to Rhynchopora australasica from the latest Asselian-early Tastubian of Western Australia. The marine biostratigraphical data from Argentina has enabled a much greater understanding of the earliest Permian marine faunas to be achieved - a story that is apparently absent from the other cold and cool temperate regions of Gondwana.  相似文献   
2.
The latest Carboniferous–Early Permian Dorud Group in the Chaman‐Saver area of eastern Alborz, Iran is more than 222 m thick and includes thick sequences of oncolitic limestone, sandy limestone, sandstones and shales. The Emarat and Ghosnavi formations of this Group are dated here as latest Gzhelian to early Sakmarian Stages. During the Asselian Stage, the sea level fell abruptly and epeirogenic episodes occurred. These events generated a broad, shallow carbonate platform suitable for the growth and diversity of smaller foraminifers in the Chaman‐Saver area which, consequently, displays faunal differences with the rest of the Alborz Mountains. Three foraminiferal biozones are proposed: Nodosinelloides potievskayae–Vervilleina bradyi Zone (latest Gzhelian), Calcitornella heathi–Nodosinelloides sp. Zone (latest Gzhelian–Asselian), and Rectogordius iranicus n. gen. n. sp.–Hemigordius schlumbergeri Zone (early Sakmarian). The new taxa described herein include: Pseudovidalina iranica n. sp., P. damghanica n. sp., Rectogordius iranicus n. gen. n. sp. and Tezaquina sp. 1. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
3.
The Upper Carboniferous—Lower Permian(Upper Pennsylvanian-Asselian) Tobra Formation is exposed in the Salt and Trans Indus ranges of Pakistan.The formation exhibits an alluvial plain(alluvial fan-piedmont alluvial plain) facies association in the Salt Range and Khisor Range.In addition,a stream flow facies association is restricted to the eastern Salt Range.The alluvial plain facies association is comprised of clast-supported massive conglomerate(Gmc),diamictite(Dm)facies,and massive sandstone(Sm) Hthofacies whereas the stream flow-dominated alluvial plain facies association includes fine-grained sandstone and siltstone(Fss),fining upwards pebbly sandstone(Sf),and massive mudstone(Fm) Hthofacies.The lack of glacial signatures(particularly glacial grooves and striatums) in the deposits in the Tobra Formation,which are,in contrast,present in their timeequivalent and palaeogeographically nearby strata of the Arabian peninsula,e.g.the AI Khlata Formation of Oman and Unayzah B member of the Saudi Arabia,suggests a pro-to periglacial,i.e.glaciofluvial depositional setting for the Tobra Formation.The sedimentology of the Tobra Formation attests that the Salt Range,Pakistan,occupied a palaeogeographic position just beyond the maximum glacial extent during Upper Pennsylvanian-Asselian time.  相似文献   
4.
Abstract

The upper Lower Carboniferous to lowermost Permian terrigenous succession of the Spiti Valley can be subdivided into five formations (Thabo Formation, Fenestella Shale, Kabjima Quartzarenite, Chichong Formation and Ganmachidam Diamictite), here described in detail and subdivided into members or lithozones.

The Po Group, overlying the platform carbonates and gypsum deposits of the Lipak Formation, records an increase of subarkosic to quartzarenitic terrigenous detritus derived from uplift and erosion of continental blocks in the south during the initial stage of Neo-Tethyan rifting. Increasing mineralogic stability through the Thabo Formation broadly coincides with a climate change from tropical arid to temperate humid conditions during the Visean-Serpukhovian. The Fenestella Shale, containing rich brachiopod associations of Bashkirian age, documents a stage of widespread subsidence and transgression, followed by the regressive Kabjima Quartzarenite, which records recycling of quartzose sedimentary sequences in the south.

The Chichong Formation marks another transgressive event, associated with a significant increase of granitoid detritus, partly from nearby Lesser to High Himalayan source areas. Chaetetid, cephalopod and brachiopod faunas hint at a Moscovian age for the “Chaetetid beds”, at the top of which varve-like lamination and scattered pebbles suggest glacially influenced deposition. The overlying glacio-fluvial (?) cobble conglomerates (“Pebbly beds”) reflect onset of rapid tectonic uplift.

Abundant detritus from sedimentary rocks characterizes the overlying Ganmachidam Diamictite, deposited in glacio-marine environments; cold-water marine faunas of Asselian age occur in its middle part. Erosion of progressively older pre-rift sedimentary successions is ascribed to basin inversion, associated with unroofing of anatectic granitoids of the Lesser and High Himalayas. Basaltic to rhyolitic volcanic detritus documents alkalic magmatism at the climax of continental rifting.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号