首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   17篇
  国内免费   54篇
大气科学   1篇
地球物理   29篇
地质学   196篇
海洋学   3篇
综合类   4篇
自然地理   5篇
  2023年   4篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   11篇
  2018年   11篇
  2017年   12篇
  2016年   7篇
  2015年   8篇
  2014年   9篇
  2013年   25篇
  2012年   7篇
  2011年   15篇
  2010年   8篇
  2009年   7篇
  2008年   2篇
  2007年   3篇
  2006年   8篇
  2005年   6篇
  2004年   10篇
  2003年   9篇
  2002年   9篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   7篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有238条查询结果,搜索用时 31 毫秒
1.
太子河流域西部竹蜓类动物群,以本溪—牛心台地区为最发育,一般可划分为一个共存延限带,一个组合带,后者又可进一步划分为3个组合亚带。ⅡFusulina-Fusulinela组合带3Fusulinacylindrica-F.quasicylindrica组合亚带2Fusulinelaprovectu-Fusulinapseudokonnoi组合亚带1Fusulinaschelwieni-F.mayiensis组合亚带ⅠProfusulinelaparva-Eostafelasubsolana共存延限带Profusulinelaparva系作者等研究辽南竹蜓类并建带的带分子,Eostuffelasubsolana为盛金章教授建立的辽东本溪群下部竹蜓带的带分子,时代为中石炭世早期。Fusulina-Fusulinela组合带代表本区及东北南部最发育的竹蜓类动物群。该带属于中石炭世中—晚期,也是太子河流域最大海侵期。以上二个竹蜓类生物带总体应属于Moscovian阶,时代为中石炭世。  相似文献   
2.
刘发刚  刘星  彭程  曾庆荣 《云南地质》2005,24(4):414-420
将金平县龙脖河口一带原划二叠纪的玄武岩组,三叠纪的个旧组、火把冲组,更正为元古代,并命名为龙脖河岩群。为研究该区的地层展布、大地构造环境、古地理、构造活动等提供了新资料。  相似文献   
3.
New field, geochronological, geochemical and biostratigraphical data indicate that the central and northern parts of the Cordillera Occidental of the Andes of Ecuador comprise two terranes. The older (Pallatanga) terrane consists of an early to late (?) Cretaceous oceanic plateau suite, late Cretaceous marine turbidites derived from an unknown basaltic to andesitic volcanic source, and a tectonic mélange of probable late Cretaceous age. The younger (Macuchi) terrane consists of a volcanosedimentary island arc sequence, derived from a basaltic to andesitic source. A previously unidentified, regionally important dextral shear zone named the Chimbo-Toachi shear zone separates the two terranes. Regional evidence suggests that the Pallatanga terrane was accreted to the continental margin (the already accreted Cordillera Real) in Campanian times, producing a tectonic mélange in the suture zone. The Macuchi terrane was accreted to the Pallatanga terrane along the Chimbo-Toachi shear zone during the late Eocene, probably in a dextral shear regime. The correlation of Cretaceous rocks and accretionary events in the Cordillera Occidental of Ecuador and Colombia remains problematical, but the late Eocene event is recognised along the northern Andean margin.  相似文献   
4.
The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significantly enriched in the lavas. Most samples have positive εNd, which indicates that the magma was derived from EM-type mantle source, while a few samples with negative εNd indicate that there was contamination in the magma evolution. Magma differentiation is demonstrated by variations of LREE and LILE from depletion to enrichment. Additionally, normalized REE patterns and trace elements showed that lavas from the Bikou volcanic terrane have similar characteristics to those of basalts in arc settings caused by subduction and collision. Analyses showed that the Bikou volcanic terrane is a volcanic arc. New evidence proved that the Hengdan Group, north of the Bikou arc, is a turbidite terrane filling a forearc basin. Consequently, the Bikou volcanic terrane and the Hengdan turbidite terrane const  相似文献   
5.
After a review of the rock sequences and evolution of the eastern and central terranes of Hoggar, this paper focusses on the Neoproterozoic subduction-related evolution and collision stages in the central–western part of the Tuareg shield. Rock sequences are described and compared with their counterparts identified in the western and the eastern terranes exposed in Hoggar and northern Mali. The Pharusian terrane that is described in detail, is floored in the east by the Iskel basement, a Mesoproterozoic arc-type terrane cratonized around 840 Ma and in the southeast by Late Paleoproterozoic rock sequences (1.85–1.75 Ga) similar to those from northwestern Hoggar. Unconformable Late Neoproterozoic volcanosedimentary formations that mainly encompass volcanic greywackes were deposited in troughs adjacent to subduction-related andesitic volcanic ridges during the c. 690–650 Ma period. Abundant arc-related pre-collisional calc-alkaline batholiths (650–635 Ma) intruded the volcanic and volcaniclastic units at rather shallow crustal levels prior to collisional processes. The main E–W shortening in the Pharusian arc-type crust occurred through several stages of transpression and produced overall greenschist facies regional metamorphism and upright folding, thus precluding significant crustal thickening. It was accompanied by the shallow emplacement of calc-alkaline batholiths and plutons. Ages of syn-collisional granitoids range from 620 Ma in the western terranes, to 580 Ma in the Pharusian terrane, thus indicating a severe diachronism. After infill of molassic basins unconformable above the Pan-African greenschists, renewed dextral transpression took place in longitudinal domains such as the Adrar fault. The lithology, volcanic and plutonic suites, deep greenschist facies metamorphism, structures and kinematics from the Adrar fault molassic belt previously considered as Neoproterozoic are described in detail. The younger late-kinematic plutons emplaced in the Pharusian terrane at 523 Ma [Lithos 45 (1998) 245] relate to a Cambrian tectonic pulse that post-dates molasse deposition. The new geodynamic scenario presented considers several paleosubductions. The major east-dipping subduction, corresponding to the closure of a large Pan-African oceanic domain in the west (680–620 Ma) post-dates an older west-dipping “Pharusian” subduction (690–650 Ma?) to the east of the eastern Pharusian terrane. Such a diachronism is suggested by the 690 Ma old eclogites of the western part of the LATEA terrane of central Hoggar [J. African Earth Sci. this volume (2003)] that are nearly synchronous with the building up of the Pharusian terrane, thus suggesting that the 4°50 lithospheric fault represents a reactivated cryptic suture.  相似文献   
6.
滇西南南段组和拉巴群地质时代及构造背景   总被引:8,自引:4,他引:8  
南段组和拉巴群出露于昌宁-孟连构造带内,是临沧地体的组成部分。通过南畔、阿里、南段、海邦和团结吊桥剖面研究,拉巴群可分为5个岩性段,归上石炭统至二叠系,南段组属下石炭统。临沧地体为一稳定的微陆块,二叠纪晚期增生到澜沧江岛弧的西缘。  相似文献   
7.
Yujiro  Nishimura  Philippa M.  Black  Tetsumaru  Itaya 《Island Arc》2004,13(3):416-431
Abstract A southwest dipping Mesozoic accretionary complex, which consists of tectonically imbricated turbiditic mudstone and sandstone, hemipelagic siliceous mudstone, and bedded cherts and basaltic rocks of pelagic origin, is exposed in northern North Island, New Zealand. Interpillow limestone is sometimes contained in the basaltic rocks. The grade of subduction‐related metamorphism increases from northeast to southwest, indicating an inverted metamorphic gradient dip. Three metamorphic facies are recognized largely on the basis of mineral parageneses in sedimentary and basaltic rocks: zeolite, prehnite‐pumpellyite and pumpellyite‐actinolite. From the apparent interplanar spacing d002 data for carbonaceous material, which range from 3.642 to 3.564 Å, the highest grade of metamorphism is considered to have attained only the lowermost grade of the pumpellyite‐actinolite facies for which the highest temperature may be approximately 300°C. Metamorphic white mica K–Ar ages are reported for magnetic separates and <2 µm hydraulic elutriation separates from 27 pelitic and semipelitic samples. The age data obtained from elutriation separates are approximately 8 m.y. younger, on average, than those from magnetic separates. The age difference is attributed to the possible admixture of nonequilibrated detrital white mica in the magnetic separates, and the age of the elutriation separates is considered to be the age of metamorphism. If the concept, based on fossil evidence, of the subdivision of the Northland accretionary complex into north and south units is accepted, then the peak age of metamorphism in the north unit is likely to be 180–130 Ma; that is, earliest Middle Jurassic to early Early Cretaceous, whereas that in the south unit is 150–130 Ma; that is, late Late Jurassic to early Early Cretaceous. The age cluster for the north unit correlates with that of the Chrystalls Beach–Taieri Mouth section (uncertain terrane), while the age cluster for the south unit is older than that of the Younger Torlesse Subterrane in the Wellington area, and may be comparable with that of the Nelson and Marlborough areas (Caples and Waipapa terranes).  相似文献   
8.
The Proterozoic Eastern Ghats Mobile Belt along the east coast of India shares a thrusted lower contact with the surrounding cratons. The thrust, known as the Terrane Boundary shear zone, is associated with two large lateral ramps resulting in a curved outline on the northwestern corner of the mobile belt. The Eastern Ghats Mobile Belt is divided into two lithotectonic units, the Lathore Group and the Turekela Group, based on their lithological assemblages and deformational history. On the basis of published data from a Deep Seismic Sounding (DSS) profile of the Eastern Ghats crust, the Terrane Boundary Shear Zone is considered to be listric in nature and acts as the sole thrust between craton and mobile belt. The Lathore and Turekela Groups are nappes. With this structural configuration the NW part is described as a fold thrust belt. However, the thrusting postdates folding and granulite metamorphism that occurred in the Eastern Ghats, as in the Caledonide type of fold thrust belt of NW Scotland. The Terrane Boundary Shear Zone is interpreted to be contiguous with the Rayner-Napier boundary of the Enderby Land in a Gondwana assembly.  相似文献   
9.
Although contemporary policy making is substantially affected by consultants, little is known about the interconnection of their role inside policy making networks and their key product – knowledge. This paper matches the approaches on Policy Mobilities (PM) and Territorial Knowledge Dynamics (TKD) to fill this theoretical gap. By exploring the synergies of both concepts, a research agenda is suggested that enables to investigate the multi-facetted entanglements of knowledge and policy making dynamics as well as what stake consultants have in this complex assemblage. Accordingly, this paper claims appreciation of ‘variegated consultocracies’ rather than global homogeneity of consultants’ engagement in policy making processes by explicating better integration of ‘scale, ‘time’, and actors’ embeddedness into PM. The paper thus primarily aims to provide a solid theoretical and methodological basis for exploring the complex dynamics consultants take part in, and how they in turn impact policy making processes.  相似文献   
10.
We report new zircon U–Pb age, Hf isotopic, and major and trace element data for rhyolites from the Duolong Ore Concentration Area of the Southern Qiangtang Terrane. Building on previous studies, we constrain the tectonic setting and propose a model to explain the geodynamics and crustal growth during regional magmatism in the Early Cretaceous. The analysed rhyolites yield laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb ages of 115 and 118 Ma. The rocks are K-rich (K2O = 6.66–9.93 wt.%; K2O/Na2O = 8.2–19.7 wt.%), alkaline and peraluminous (A/CNK = 1.02–1.46), and are characterized by high SiO2 contents (72.8–78.8 wt.%) similar to highly fractionated I-type granites. Fractionation of Fe–Ti oxides, plagioclase, hornblende, Ti-bearing phases, apatite, monazite, allanite and zircon contributed to the variations in major and trace element chemistry. High K2O contents are likely due to partial melting of the continental crust. The samples have positive zircon εHf(t) values ranging from +7.1 to +11.2. These features, together with young zircon Hf crustal model ages of 489–721 Ma, indicate that the K-rich rhyolites were derived from juvenile lower crust with an input of a mantle-derived component. We suggest that the Early Cretaceous K-rich rhyolites formed in a continental arc setting during northward subduction of Bangong Co–Nujiang oceanic lithosphere. Basaltic magma underplating was responsible for vertical crustal growth, triggered by slab roll-back in the Duolong Ore Concentration Area in the Early Cretaceous.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号