首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
地球物理   5篇
地质学   27篇
海洋学   1篇
自然地理   5篇
  2020年   3篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1983年   2篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at forested sites in the Andes Mountains (Ecuador), the southern Appalachian Mountains (USA), and the Luquillo Mountains (Puerto Rico). Using a portable rainfall simulator–infiltrometer (all three areas), and a single ring infiltrometer (Andes), we determined infiltration rates, even on steep slopes. Based on these results, we examine the spatial variability of infiltration, the relationship of rainfall runoff and infiltration to landscape position, the influence of vegetation on infiltration rates on slopes, and the implications of this research for better understanding erosional processes and landscape change.Infiltration rates ranged from 6 to 206 mm/h on lower slopes of the Andes, 16 to 117 mm/h in the southern Appalachians, and 0 to 106 mm/h in the Luquillo Mountains. These rates exceed those of most natural rain events, confirming that surface runoff is rare in montane forests with deep soil/regolith mantles. On well-drained forested slopes and ridges, apparent steady-state infiltration may be controlled by the near-surface downslope movement of infiltrated water rather than by characteristics of the full vertical soil profile. With only two exceptions, the local variability of infiltration rates at the scale of 10° m overpowered other expected spatial relationships between infiltration, vegetation type, slope position, and soil factors. One exception was the significant difference between infiltration rates on alluvial versus upland soils in the Andean study area. The other exception was the significant difference between infiltration rates in topographic coves compared to other slope positions in the tabonuco forest of one watershed in the Luquillo Mountains. Our research provides additional evidence of the ability of forests and forest soils to preserve geomorphic features from denudation by surface erosion, documents the importance of subsurface flow in mountain forests, and supports the need for caution in extrapolating infiltration rates.  相似文献   
2.
Hugh H. Mills   《Geomorphology》2003,55(1-4):263
Measures of local relief, regional relief, and slope were calculated from digital elevation models (DEMs) for 50 bedrock units in the Ridge and Valley and Blue Ridge provinces of Tennessee. Each of these measures was normalized and the three were then averaged to produce the erosional resistance index (ERI). Bedrock units with higher ERI values include coarse clastics, intermediate clastics, and metaplutonics. Units with lower values include shales, limestones, limestones plus dolostones, and carbonates plus fine clastics. Dolostones tend to have intermediate values. The calculated ERI values were compared with subjective ratings by a geologist with decades of field experience in east Tennessee. Generally, the agreement between the two ratings was good, the most glaring exception being several shales with improbably high ERI values. These turned out to be thin units cropping out beneath very hard sandstones, allowing them to stand higher and steeper than would otherwise be possible. A systematic method for detecting such erroneously high ERI values is suggested. Inspection of a drainage map superimposed on the geology map shows that in a given area, streams tend to flow on rock units with the lowest ERI values. In addition, statistical analysis shows that bedrock units with the lowest ERI values are, on average, almost three times closer to the nearest stream and six times as likely to have streams flowing on them than are units with highest values. Further, the effect of ERI on stream location is strongest for streams with drainage areas between 1 and 30 km2. Thus, small streams appear to be subject to greater lithologic control than are larger streams.  相似文献   
3.
The Ratcliff Site in southwestern Virginia lies in a small second-order stream valley filled with approximately 3.5 m of organic-rich deposits that contain bones of mammoth, mastodon, deer (or antelope), logs, and plant macrofossils. Radiocarbon analyses indicate the age of the organic-rich sediment ranges from > 44,000 to 29,100 14C yr BP, a time period with no fossil remains reported in this region of the Appalachians. Analyses of field observations, textural data, organic carbon content, and plant macrofossils indicate that the organic-rich sediments contain interbedded standing-water and debris-flow deposits. Up to 6 m of oxidized debris-flow sediments bury the organic-rich sediments. The presence of Rubus parviflorus (Thimble Berry) throughout the deposit indicates the site had a boreal environment from > 44,000 to 29,100 14C yr BP. Plant macrofossil evidence indicates the uplands had stands of spruce/jack-pine forests while the valley contained ponds and associated wetlands. Three debris flows occurred at the site between approximately 38,000 and 29,000 14C yr BP, suggesting a recurrence interval for major storms of approximately 3000 yr, even though the apparent stability of the boreal environment implies a climate not conducive to catastrophic rainstorms. This conflicting combination of features suggests that during the middle Wisconsinan this area experienced generally cool climates, dominated by polar air masses, but was punctuated by relatively brief warm periods marked by incursions of tropical air masses.  相似文献   
4.
Abstract Illite crystallinity (IC) measurements, determination of the proportion of 2M mica-polytypes and organic-matter reflectance measurements establish regional diagenetic/low-grade metamorphic trends for the Taconian and Acadian belts of Gaspé Peninsula. IC varies as a function of many factors besides maximum burial temperature and heating time. Correlation between IC and %2M illite polytypes for the Fortin Group and Temiscouata Formation suggests (i) that the amount of high-grade detrital mica in the samples is low, and (ii) that IC can be used with some confidence as an estimator of regional thermal maturation levels. Correlation of these parameters with available organic reflectance values further supports this assumption. The illites of the Temiscouata and western Fortin groups are mostly phengitic in composition, whereas in the eastern outcrop belt they are more Mg- and Fe-rich (celadonitic), but generally also of lower grade and lower 2M content. The d(060) values for illites measured on the unorientated <2-μm fraction of samples fall between 1.502 and 1.503 Å (range: 1.500–1.504 Å), indicating relatively low octahedral occupancy by Mg and Fe (between one-fifth and one-third of the available spaces). Pyrophyllite and paragonite were not detected. Chlorites are Fe-rich and ripidolitic. The IC map for the Acadian belt of the peninsula displays general congruence between IC contours (2200 sample points) and structural trends for the 27,000-km2 area. The highest grades (anchimetamorphic) are associated with the oldest rocks (Honorat and Matapedia groups) exposed in the cores of major anticlines. Anchimetamorphic grades associated with the western outcrop belt of the Lower Devonian Fortin Group require 7–8 km of subsidence to accommodate sufficient thickness of overlying younger rocks (on top of 4–5 km of Fortin Group deep-water clastics) to explain the grades in terms of burial metamorphism assuming a geothermal gradient of 30° C km?1. The lowest-grade diagenetic rocks occupy a large area in the northeastern part of the peninsula, smaller areas in the northwestern part of the Acadian belt, in the centre of Chaleurs Bay synclinorium, and in the Ordovician Mictaw Group. The contact between the Taconian and Acadian belt is marked by a distinct maturation discontinuity. The Grand Pabos fault juxtaposes rocks of contrasting maturation levels (Matapedia Group against Fortin Group) in the west, but shows no maturation offset further east in the Honorat Group. The fault zone limiting the Fortin Group in the north is also associated with a major IC jump.  相似文献   
5.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   
6.
Abstract Contact aureoles of plutons emplaced into regionally metamorphosed terranes can provide indicators of physical conditions along a portion of regional metamorphic P-T trajectories, thereby allowing reconstruction of more complete P-T loops than would be otherwise possible. In the Northern Alabama Piedmont of the southern Appalachians, Wedowee Group metapelites preserve evidence for two regional metamorphic phases overprinted by contact metamorphism adjacent to the Blakes Ferry Trondhjemite. Textural evidence indicates that an early bt+st+grt assemblage was replaced by bt+chl+grt during the latter stages of regional metamorphism. Changes in AKFM topology, complex Fe-Mg-Ca garnet zoning, and the latestage appearance of epidote indicate that a sequence of continuous reactions (bt+st = grt+ ms followed by chl+ms+Ca-grt+Ca-pl=bt+ (Fe+Mg)-grt+ep) occurred in response to increasing pressure and resulted in the observed changes in mineral assemblage. Pl-ms-bt-grt thermobarometry indicates conditions of 580° 65°C, 8.5±0.8 kbar for equilibration of grt+ bt+chl. Pluton emplacement, subsequent to penetrative deformation, caused textural annealing and mineral re-equilibration by the continuous reaction bt+(Fe+Mg)-grt+ep = chl+ms+Ca-grt+Ca-pl within 50 m of the pluton. Conditions of 510±65°C, 5-7 kbar are inferred. A reconstructed P-T trajectory for this area is characterized by (1) early moderate- T , moderate- P metamorphism; (2) an increase in P to approximately 8.5 kbar; and (3) decompression and slight cooling prior to pluton emplacement. The compressional phase of this path is interpreted to result from underthrusting of the Wedowee metasediments to mid-crustal levels during Palaeozoic crustal thickening. Late-stage decompression prior to intrusion records uplift of these rocks in response to movement on structurally lower thrusts.  相似文献   
7.
The southern Appalachians represent a landscape characterized by locally high topographic relief, steep slopes, and frequent mass movement in the absence of significant tectonic forcing for at least the last 200 Ma. The fundamental processes responsible for landscape evolution in a post‐orogenic landscape remain enigmatic. The non‐glaciated Cullasaja River basin of south‐western North Carolina, with uniform lithology, frequent debris flows, and the availability of high‐resolution airborne lidar DEMs, is an ideal natural setting to study landscape evolution in a post‐orogenic landscape through the lens of hillslope–channel coupling. This investigation is limited to channels with upslope contributing areas >2.7 km2, a conservative estimate of the transition from fluvial to debris‐flow dominated channel processes. Values of normalized hypsometry, hypsometric integral, and mean slope vs elevation are used for 14 tributary basins and the Cullasaja basin as a whole to characterize landscape evolution following upstream knickpoint migration. Results highlight the existence of a transient spatial relationship between knickpoints present along the fluvial network of the Cullasaja basin and adjacent hillslopes. Metrics of topography (relief, slope gradient) and hillslope activity (landslide frequency) exhibit significant downstream increases below the current position of major knickpoints. The transient effect of knickpoint‐driven channel incision on basin hillslopes is captured by measuring the relief, mean slope steepness, and mass movement frequency of tributary basins and comparing these results with the distance from major knickpoints along the Cullasaja River. A conceptual model of area–elevation and slope distributions is presented that may be representative of post‐orogenic landscape evolution in analogous geologic settings. Importantly, the model explains how knickpoint migration and channel–hillslope coupling is an important factor in tectonically‐inactive (i.e. post‐orogenic) orogens for the maintenance of significant relief, steep slopes, and weathering‐limited hillslopes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
8.
《自然地理学》2013,34(6):481-498
A number of studies have elucidated the distributional patterns of various components of Southern Appalachian forests. The evergreen understory here is composed largely of a dominant ericaceous shrub, Rhododendron maximum L., which is believed to be expanding and inhibiting the development of other species with consequent impacts on overall forest structure and composition. We use a GIS and logistic regression to examine this less-studied forest element in the Coweeta Hydrological Laboratory, North Carolina, over a 17-year period to determine whether expansion is occurring and, if so, whether it can be predicted based on terrain characteristics. We examine two adjacent, physically similar basins with differing degrees of experimental manipulation in the 20th century in an attempt to examine the role of environmental and historical factors in determining spatial patterns of persistence, expansion, and decline of the evergreen understory. Results indicate that significant expansion of the evergreen understory occurred in both basins during the period 1976-1993, and that stream proximity, topographic setting, and elevation are related to patterns of evergreen-understory dynamics. Patterns differ between the two basins, suggesting that disturbance and differing land-use histories are also influential. Predictive power of models based on terrain factors alone ranges from <10% to >50%.  相似文献   
9.
Two groups of granitoids associated with gold mineralization in the Appalachian orogen of southwestern New Brunswick are recognized: a Late Silurian to Early Devonian (423–396 Ma) granodioritic to monzogranitic series (GMS), and a Late Devonian (370–360 Ma) granitic series (GS). The GMS granitoids are relatively low in silica, calc-alkaline, metaluminous to weakly peraluminous, and show characteristics of normal (oxidized) to reduced I-type granites depending on the properties of country rocks. They may have been derived from partial melting of lower crustal rocks triggered by underplated basaltic magmas; and country rocks bearing reduced organic carbon and/or graphite may have played an important role in the reduction of normal I-type intrusions to reduced I-type, which is essential in the formation of intrusion-related gold systems. In contrast, the GS granites, although calc-alkaline and metaluminous to peraluminous, are relatively rich in silica, incompatible elements, and high field strength elements. They are fractionated I-type granites, and are probably related to the coeval Mount Douglas granite in the Saint George batholith through fractional crystallization. Their parental magmas may have been derived from partial melting of quartzofeldspathic sources at relatively low temperatures. Both GMS and GS intrusions are orogenic, although some of them display the affinity of those emplaced into a within-plate environment. The origin of intrusion-related gold systems in this region appears to be controlled by several factors, including magma sources, magmatic processes, redox conditions (country-rock nature), and local structural regimes.  相似文献   
10.
Together, recent gravity and high-resolution aeromagnetic datasets are used to qualitatively investigate the upper- and middle-crustal geometry of the Middle Paleozoic Gaspé belt in the northern Appalachians. Long-wavelength potential field anomalies define two sub-basins that are divided by northeast trending gravity highs. For each sub-basins, gravity lows correlate with the youngest rock units.Maps that highlight anomalies associated with near surface features, at the expense of those related to deeper sources, provide an important supplement to the spatially discrete observations derived from bedrock mapping. Analysis of such maps indicates that the sub-basins are characterized by different structural patterns and that faults trending obliquely compared to the main structural grain have been previously underestimated.The geometry of the Gaspé belt as revealed by this integrated geophysical and geological study bears similarities with orogens exhibiting lateral extrusion. This geometry is interpreted as the result of a heterogeneous strain regime in front of an indenter corresponding to the Early Paleozoic Gander/Dunnage crustal block. The indentation tectonic model is supported by: 1) the various strike and kinematic of faults that suggest a strongly heterogeneous strain regime; 2) the greater geological complexity and the occurrence of faults with a significant thrust component in front of the indenter; 3) the predominance of dextral strike-slip faults in the eastern Gaspé Peninsula that result in lateral material transport away from the indenter; 4) the location of abundant Devonian magmatic dykes, sills and stocks in a fault-bounded zone that experienced local extension; 5) the occurrence of block rotation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号