首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   8篇
地质学   26篇
  2018年   2篇
  2017年   2篇
  2013年   1篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
陈伟  赵太平  魏庆国  徐勇航 《岩石学报》2008,24(10):2301-2312
铁钛磷灰岩仅由磷灰石和铁钛氧化物组成,常赋存于岩体型斜长岩中,成因上有不混溶和分异堆晶两种不同的认识。本文从磷灰石角度讨论河北大庙铁钛磷灰岩的形成机制。大庙铁钛磷灰岩常产出于浸染状Fe—P矿体内部,有时与块状铁矿石交互出现形成韵律条带状矿石,为岩浆结晶分异的产物。铁钛磷灰岩中磷灰石呈浑圆状,含量变化于15%-34%。铁钛磷灰岩的全岩和磷灰石微量元素分析显示,磷灰石比全岩相对富集稀土元素达2.96—6.93倍,但两者的配分型式基本平行。质量平衡计算(Rocl/F)的结果表明,铁钛磷灰岩中几乎100%的稀土元素赋存于磷灰石中。综合上述特征,反映磷灰石为结晶分离的堆晶矿物,铁钛磷灰岩应为堆晶成因。因为如果磷灰石结晶于铁钛磷灰岩不混溶熔体,它的稀土元素分配系数也不会变化达2.3倍(变化于2.96—6.93)。计算出该磷灰石的母岩浆稀土元素组成,与浸染状Fe.P矿石最为相似,结合它与铁钛磷灰岩之间紧密共生的野外特征以及相似的全岩及磷灰石稀土元素配分型式,认为磷灰石最可能是在浸染状Fe.P矿浆中,经结晶分离作用形成铁钛磷灰岩。  相似文献   
2.
Major and trace element XRF and in situ LA-ICP-MS analyses of ilmenite in the Tellnes ilmenite deposit, Rogaland Anorthosite Province, SW Norway, constrains a two stage fractional crystallization model of a ferrodioritic Fe-Ti-P rich melt. Stage 1 is characterized by ilmenite-plagioclase cumulates, partly stored in the lower part of the ore body (Lower Central Zone, LCZ), and stage 2 by ilmenite-plagioclase-orthopyroxene-olivine cumulates (Upper Central Zone, UCZ). The concentration of V and Cr in ilmenite, corrected for the trapped liquid effect, (1) defines the cotectic proportion of ilmenite to be 17.5 wt% during stage 1, and (2) implies an increase of D VIlm during stage 2, most likely related to a shift in fO2. The proportion of 17.5 wt% is lower than the modal proportion of ilmenite (ca. 50 wt%) in the ore body, implying accumulation of ilmenite and flotation of plagioclase. The fraction of residual liquid left after crystallization of Tellnes cumulates is estimated at 0.6 and the flotation of plagioclase at 26 wt% of the initial melt mass. The increasing content of intercumulus magnetite with stratigraphic height, from 0 to ca. 3 wt%, results from differentiation of the trapped liquid towards magnetite saturation. The MgO content of ilmenite (1.4–4.4 wt%) is much lower than the expected cumulus composition. It shows extensive postcumulus re-equilibration with trapped liquid and ferromagnesian silicates, correlated with distance to the host anorthosite. The Zr content of ilmenite, provided by in situ analyses, is low (<114 ppm) and uncorrelated with stratigraphy or Cr content. The data demonstrate that zircon coronas observed around ilmenite formed by subsolidus exsolution of ZrO2 from ilmenite. The U-Pb zircon age of 920 ± 3 Ma probably records this exsolution process. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
3.
http://dx.doi.org/10.1016/j.gsf.2016.11.007   总被引:1,自引:1,他引:0  
Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite(mode of plagioclase 95 vol.%) is a key to reveal the early magmatic evolution of the terrestrial planets.To form the pure lunar anorthosite,plagioclase should have separated from the magma ocean with low crystal fraction.Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma(φ) is higher than ca.40-60 vol.%,which inhibit the formation of pure anorthosite.In contrast,when φ is small,the magma ocean is highly turbulent,and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt.To determine the necessary conditions in which anorthosite forms from the LMO,this study adopted the energy criterion formulated by Solomatov.The composition of melt,temperature,and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt.When plagioclase starts to crystallize,the Mg~# of melt becomes 0.59 at 1291 C.The density of the melt is smaller than that of plagioclase for P 2.1 kbar(ca.50 km deep),and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase(1.8-3 cm).This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize.When the Mg~# of melt becomes 0.54 at 1263 C,the density of melt becomes larger than that of plagioclase even for 0 kbar.When the Mg~# of melt decreases down to 0.46 at 1218 C,the critical diameter of plagioclase to separate from the melt becomes 1.5-2.5 cm,which is nearly equal to the typical plagioclase of the lunar anorthosite.This suggests that plagioclase could separate from the melt.One of the differences between the Earth and the Moon is the presence of water.If the terrestrial magma ocean was saturated with H_2O,plagioclase could not crystallize,and anorthosite could not form.  相似文献   
4.
The Jönköping Anorthositic Suite (JAS) in S. Sweden has characteristics typical for (Proterozoic) massif-type anorthosites. The interstitial liquid of these plagioclase-porphyritic rocks solidified at 1,455 ± 6 Ma, as determined by U–Pb isotope analysis of baddeleyite. The JAS developed during a regional 1.47–1.44 event in Fennoscandia that generated widespread mafic magmatism (basalts, and diabase dykes and sills) in the north and emplacement of felsic plutons in the south. The event of 1.47–1.44 Ga magmatism in Fennoscandia largely coincides in age with dynamic high-grade metamorphism in SW Sweden and was probably related to convergent active-margin processes during the Danopolonian orogeny.  相似文献   
5.
河北大庙斜长岩杂岩体锆石U-Pb年龄及其地质意义   总被引:25,自引:21,他引:25  
河北承德大庙斜长岩杂岩体是我国唯一的岩体型斜长岩。为了确定杂岩体的形成时代,作者从杂岩体主要组成岩石——苏长岩、纹长二长岩中选取锆石作U-Pb年龄测定,所获得的结晶年龄分别是1693±7 Ma、1715±6 Ma。这些锆石U-Pb年龄数据说明,大庙斜长岩杂岩体的侵位至少持续了约20 Ma。大庙斜长岩杂岩体和密云奥长环斑花岗岩、长城系大红峪组钾质火山岩,以及广泛发育的基性岩墙群一起可能代表华北陆块1750~1650 Ma大陆裂解事件的岩浆作用产物。  相似文献   
6.
Tom Andersen  William L Griffin   《Lithos》2004,73(3-4):271-288
The Storgangen orebody is a concordantly layered, sill-like body of ilmenite-rich norite, intruding anorthosites of the Rogaland Intrusive Complex (RIC), SW Norway. 17 zircon grains were separated from ca. 5 kg of sand-size flotation waste collected from the on-site repository from ilmenite mining. These zircons were analysed for major and trace elements by electron microprobe, and for U–Pb and Lu–Hf isotopes by laser ablation microprobe plasma source mass spectrometry. Eight of the zircons define a well-constrained (MSWD=0.37) concordant population with an age of 949±7 Ma, which is significantly older than the 920–930 Ma ages previously reported for zircon inclusions in orthopyroxene megacrysts from the RIC. The remaining zircons, interpreted as inherited grains, show a range of 207Pb/206Pb ages up to 1407±14 Ma, with an upper intercept age at ca. 1520 Ma. The concordant zircons have similar trace element patterns, and a mean initial Hf isotope composition of 176Hf/177Hf949 Ma=0.28223±5 (Hf=+2±2). This is similar to the Hf-isotope composition of zircons in a range of post-tectonic Sveconorwegian granites from South Norway, and slightly more radiogenic than expected for mid-Proterozoic juvenile crust. The older, inherited zircons show Lu–Hf crustal residence ages in the range 1.85–2.04 Ga. One (undated) zircon plots well within the field of Hf isotope evolution of Paleoproterozoic rocks of the Baltic Shield. These findings indicate the presence of Paleoproterozoic components in the deep crust of the Rogaland area, but do not demonstrate that such rocks, or a Sveconorwegian mantle-derived component, contributed significantly to the petrogenesis of the RIC. If the parent magma was derived from a homogeneous, lower crustal mafic granulite source, the lower crustal protolith must be at least 1.5 Ga old, and it must have an elevated Rb/Sr ratio. This component would be indistinguishable in Sr, Nd and Hf isotopes from some intermediate mixtures between Sveconorwegian mantle and Paleoprotoerzoic felsic crust, but it cannot account for the initial 143Nd/144Nd of the most primitive, late Sveconorwegian granite in the region, without the addition of mantle-derived material.  相似文献   
7.
Ti-in-zircon thermometry: applications and limitations   总被引:16,自引:5,他引:11  
The titanium concentrations of 484 zircons with U-Pb ages of ∼1 Ma to 4.4 Ga were measured by ion microprobe. Samples come from 45 different igneous rocks (365 zircons), as well as zircon megacrysts (84) from kimberlite, Early Archean detrital zircons (32), and zircon reference materials (3). Samples were chosen to represent a large range of igneous rock compositions. Most of the zircons contain less than 20 ppm Ti. Apparent temperatures for zircon crystallization were calculated using the Ti-in-zircon thermometer (Watson et al. 2006, Contrib Mineral Petrol 151:413–433) without making corrections for reduced oxide activities (e.g., TiO2 or SiO2), or variable pressure. Average apparent Ti-in-zircon temperatures range from 500° to 850°C, and are lower than either zircon saturation temperatures (for granitic rocks) or predicted crystallization temperatures of evolved melts (∼15% melt residue for mafic rocks). Temperatures average: 653 ± 124°C (2 standard deviations, 60 zircons) for felsic to intermediate igneous rocks, 758 ± 111°C (261 zircons) for mafic rocks, and 758 ± 98°C (84 zircons) for mantle megacrysts from kimberlite. Individually, the effects of reduced or , variable pressure, deviations from Henry’s Law, and subsolidus Ti exchange are insufficient to explain the seemingly low temperatures for zircon crystallization in igneous rocks. MELTs calculations show that mafic magmas can evolve to hydrous melts with significantly lower crystallization temperature for the last 10–15% melt residue than that of the main rock. While some magmatic zircons surely form in such late hydrous melts, low apparent temperatures are found in zircons that are included within phenocrysts or glass showing that those zircons are not from evolved residue melts. Intracrystalline variability in Ti concentration, in excess of analytical precision, is observed for nearly all zircons that were analyzed more than once. However, there is no systematic change in Ti content from core to rim, or correlation with zoning, age, U content, Th/U ratio, or concordance in U-Pb age. Thus, it is likely that other variables, in addition to temperature and , are important in controlling the Ti content of zircon. The Ti contents of igneous zircons from different rock types worldwide overlap significantly. However, on a more restricted regional scale, apparent Ti-in-zircon temperatures correlate with whole-rock SiO2 and HfO2 for plutonic rocks of the Sierra Nevada batholith, averaging 750°C at 50 wt.% SiO2 and 600°C at 75 wt.%. Among felsic plutons in the Sierra, peraluminous granites average 610 ± 88°C, while metaluminous rocks average 694 ± 94°C. Detrital zircons from the Jack Hills, Western Australia with ages from 4.4 to 4.0 Ga have apparent temperatures of 717 ± 108°C, which are intermediate between values for felsic rocks and those for mafic rocks. Although some mafic zircons have higher Ti content, values for Early Archean detrital zircons from a proposed granitic provenance are similar to zircons from many mafic rocks, including anorthosites from the Adirondack Mts (709 ± 76°C). Furthermore, the Jack Hills zircon apparent Ti-temperatures are significantly higher than measured values for peraluminous granites (610 ± 88°C). Thus the Ti concentration in detrital zircons and apparent Ti-in-zircon temperatures are not sufficient to independently identify parent melt composition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
8.
Lunar geochemistry as told by lunar meteorites   总被引:7,自引:0,他引:7  
About 36 lunar meteorites have been found in cold and hot deserts since the first one was found in 1979 in Antarctica. All are random samples ejected from unknown locations on the Moon by meteoroid impacts. Lithologically and compositionally there are three extreme types: (1) brecciated anorthosites with high Al2O3 (26–31%), low FeO (3–6%), and low incompatible elements (e.g., <1 μg/g Th), (2) basalts and brecciated basalts with high FeO (18–22%), moderately low Al2O3 (8–10%) and incompatible elements (0.4–2.1 μg/g Th), and (3) an impact-melt breccia of noritic composition (16% Al2O3, 11% FeO) with very high concentrations of incompatible elements (33 μg/g Th), a lithology that is identified as KREEP on the basis of its similarity to Apollo samples of that designation. Several meteorites are polymict breccias of intermediate composition because they contain both anorthosite and basalt. Despite the large range in compositions, a variety of compositional parameters together distinguish lunar meteorites from terrestrial materials. Compositional and petrographic data for lunar meteorites, when combined with mineralogical and compositional data obtained from orbiting spacecraft in the 1990s, suggest that Apollo samples identified with the magnesian (Mg-rich) suite of nonmare rocks (norite, troctolite, dunite, alkali anorthosite, and KREEP) are all products of a small, geochemically anomalous (noritic, high Th) region of crust known as the Procellarum KREEP Terrane and are not, as generally assumed, indigenous to the vast expanse of typical feldspathic crust known as the Feldspathic Highlands Terrane. Magnesian-suite rocks such as those of the Apollo collection do not occur as clasts in the feldspathic lunar meteorites. The misconception is a consequence of four historical factors: (1) the Moon has long been viewed as simply bimodal in geology, mare or highlands, (2) one of the last, large basin-forming bolides impacted in the Procellarum KREEP Terrane, dispersing Th-rich material, (3) although it was not known at the time, the Apollo missions all landed in or near the anomalous Procellarum KREEP Terrane and collected many Th-rich samples formed therein, and (4) the Apollo samples were interpreted and models for lunar crust formation developed without recognition of the anomaly because global data provided by orbiting missions and lunar meteorites were obtained only years later.  相似文献   
9.
Hornblende incremental heating 40Ar/39Ar data were obtained from augen gneiss and amphibolite of the Sveconorwegian Province of S. Norway. In the Rogaland-Vest Agder and Telemark terranes, four pyroxene-rich samples, located close (≤ 10 km) to the anorthosite-charnockite Rogaland Igneous Complex, define an age group at 916 + 12/ − 14 Ma and six samples distributed in the two terranes yield another group at 871 + 8/ − 10 Ma. The first age group is close to the reported zircon U---Pb intrusion age of the igneous complex (931 ± 2 Ma) and the regional titanite U---Pb age (918 ± 2 Ma), whereas the second group overlaps reported regional mineral Rb---Sr ages (895-853 Ma) as well as biotite K---Ar ages (878-853 Ma). In the first group, the comparatively dry parageneses of low-P thermal metamorphism (M2) associated with the intrusion of the igneous complex are well developed, and hornblende 40Ar/39Ar ages probably record a drop in temperature shortly after this phase. In other hornblende + biotite-rich samples, with presumably a higher fluid content, the hornblende ages are probably a response to hornblende-fluid interaction during a late Sveconorwegian metamorphic or hydrothermal event. A ca 220 m.y. diachronism in hornblende 40Ar/39Ar ages is documented between S. Telemark (ca 870 Ma) and Bamble (ca 1090 Ma). Differential uplift between these terranes was mostly accommodated by shearing along the Kristiansand-Porsgrunn shear zone. The final stage of extension along this zone occurred after intrusion of the Herefoss post-kinematic granite at 926 ± 8 Ma. On the contrary, the southern part of the Rogaland-Vest Agder and Telemark terranes share a common cooling evolution as mineral ages are similar on both sides of the Mandal-Ustaoset Line the tectonic zone between them. The succession within 20 m.y. of a voluminous pulse of post-tectonic magmatism at 0.93 Ga, a phase of high-T-low-P metamorphism at 0.93-0.92 Ga, and fast cooling at a regional scale ca 0.92 Ga, suggests that the southern parts of Rogaland-Vest Agder and Telemark were affected by an event of post-thickening extension collapse at that time. This event is not recorded in Bamble.  相似文献   
10.
The first U-Pb zircon ages are reported for the gneissic bedrock inliers previously interpreted as part of the Nile Craton. The inliers crop out in the Egyptian Western Desert, east of the Uweinat area and west of the Eastern Desert. Multi- and single-grain zircon analyses of granitoid gneiss and migmatite from Gebel Um Shagir, Aswan, and another locality approximately 160 km south-west of Aswan, yield simple discordia with near modern day Pb loss trajectories, and the following Neoproterozoic crystallization ages: 626+4/–3, 634 ± 4 and 741 ± 3 Ma. In contrast, multi- and single-grain U-Pb analyses (zircon and sphene) from an anorthositic gabbro at Gebel Kamil (22°46N 26°21E) and an anorthosite at Gebel El Asr (22°46N 31°10E) yield Archean and Paleoproterozoic emplacement ages. The former yield a crystallization age of > 2.67 Ga and a metamorphic age of 2.0 Ga; the latter a metamorphic age of 0.69 Ga and an inheritance age of 1.9–2.1 Ga. Because high grade gneiss and migmatite of Neoproterozoic, Paleoproterozoic and Archean age crop out west of the Nile, pre-Neoproterozoic crust should no longer be identified by its metamorphic grade. By contrast, mapping the anorthosite and related rocks might provide first-order estimates for the extension of pre-Neoproterozoic crust in north-east Africa. It is suggested that Archean and Paleoproterozoic crust of the Uweinat and Congo Craton are contiguous because these U-Pb (zircon) data show no evidence for a Neoproterozoic thermal overprint in the Gebel Kamil area and there is no pronounced Neoproterozoic magmatic activity south of the Uweinat inlier and north of the Congo Craton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号