首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   1篇
地球物理   1篇
地质学   5篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
采用高镁安山岩(HMA)新的分类方法,描述了五台地区新太古代绿岩带中HMA的化学特征,并与实验的HMA以及自然界中典型的HMA(日本的Chichijima地区HMA和Setouchi地区HMA)进行了对比,显示该区HMA具有与上述HMA类似的化学特征。初步认为五台新太古代HMA产于洋俯冲带的环境,进而表明板块构造理论的适用时间范围可推演到新太古代。  相似文献   
2.
A detailed investigation on the location of magmatic intrusions in the Carboniferous strata of the Qinggelidi area, north‐eastern Junggar Basin, is presented based on the interpretation of gravity and magnetic data constrained by petrophysical data, seismics and surface geology. The wavelet multi‐resolution analysis based on the discrete wavelet transform is adopted to the regional‐residual separation of gravity and magnetic anomalies. A power spectrum analysis is applied to estimate the source depths corresponding to different scales. A comparative analysis on the characteristics of local gravity and magnetic anomalies improved our understanding of volcanic rock distribution in the Carboniferous strata. Generally speaking, in total 75 anomalies are recognized, among which 23 are inferred to be the responses of basalts, diabases and andesites with high density and strong magnetization. Twelve anomalies are assumed to be caused by andesites, rhyolites and volcanic breccias with medium‐low density and high magnetization. There are still five anomalies that are believed to be generated by volcanic tuffs with low density and weak magnetization. Lastly, four cross‐sections in 3D gravity and magnetic modelling are displayed to provide a more thorough image of volcanic rocks in our study area.  相似文献   
3.
In the considered wide sector of the West-Mediterranean southern Europe, the collisional phase of the Variscan orogeny during Late Carboniferous and Permian times was followed by magmatic intrusive and effusive activity and sedimentation into intracontinental, alluvial to lacustrine basins originated by wrench- to normal-fault systems. The first volcanic cycle (generally Late Carboniferous-Early Permian in age) is represented by early calc-alkaline andesites and rhyolites, in variable amounts, and by following large volume of rhyolites, and by dacites. Both andesites and rhyolites show K-normal and high-K calc-alkaline character. The origin of the liquids of the first cycle is ascribed to partial melting processes at the mantle–crust interface telescoped within a thickened crust. The melting is considered as the consequence of thermal re-equilibration following isostatic disequilibrium and the subsequent collapse of the orogenic belt; the ascent of liquids occurred in a (trans-)tensional regime. The second magmatic cycle is represented by alkaline magmatism, and exhibits typical anorogenic features consistent with a rifting regime. This event was no more related with the collapse of the Variscan belt, but rather to the post-Variscan global re-organization of plates that evolved during Late Triassic times to the neo-Tethyan rifting. In both cycles, important differences in timing, areal distribution and outpoured volumes arise.  相似文献   
4.
The mineralogy and the trace element compositions of hydrothermally-altered volcanic materials collected from ash fall deposits and in four debris-avalanche deposits (DADs) at La Soufrière volcano in Guadeloupe have been determined. Phreatic explosions of the 1976 eruption and flank collapse events have sampled various parts of the active and ancient hydrothermal systems of the volcano. Hydrothermal mineral assemblages (smectite + silica polymorphs ± pyrite/jarosite ± gypsum) are typical of rock alteration by low-temperature acid-sulphate fluids. High-temperature mineral assemblages are rare, indicating that phreatic explosions and flank collapse events have sampled mainly the upper parts of the volcanic edifice.Andesitic eruptive products affected by shallow hydrothermal alteration are complex assemblages of volcanic materials (glass, phenocrysts and xenocrysts with complex magmatic histories) of different ages and compositions. The use of incompatible element ratios and REE compositions normalised to an unaltered reference material overcomes the interpretation difficulties related to mass balance effects of alteration processes and the petrologic heterogeneity of the initial material.REE and other incompatible elements (Th, U, Hf, Zr) are mainly concentrated in the glassy matrix of unaltered andesitic rocks. Secondary S-bearing mineral phases (e.g., gypsum, jarosite) that have precipitated from acid-sulphate fluids do not contain substantial incompatible elements (REE, U, Th, Hf, Zr). Compositional variations of incompatible elements in hydrothermally-altered andesitic materials reflect mainly volcanic glass–smectite transformation, which is characterised by (i) strong depletion of alkalis and alkaline earths (Ba, Sr) and first transition series elements (Zn, Cu, Cr, Co, Ni), (ii) immobility of highly incompatible elements (Th, Zr, Hf, LREE) and (iii) strong depletion of MREE and HREE. The sigmoid shape of normalised REE pattern is characteristic of glass–smectite transformation by low-temperature acid-sulphate fluids. This transformation also produces significant variations in U/Th values, which offer the opportunity to date the cessation of hydrothermal alteration and to reconstruct the evolution in space and time of hydrothermal activity in a volcanic edifice.  相似文献   
5.
本文通过大兴安岭中段安山岩基质40At/39Ar和SHRIMP锆石U-Pb年代学的测定,表明安山岩形成于122~125Ms和114~115Ma两个时期,即为早白垩世的两期喷发.主量元素分析表明,安山岩SiO2含量为59.18%~60.89%,Al2O3含量为15.19%~17.23%,全碱(K2O Na2O)介于6.16%~7.26%之间,MgO含量为1.55%~3.77%和Mg#值为33~54;微量元素分析表明,安山岩轻稀土元素(LREE)富集、轻重稀土元素(HREE)分馏较强、略具负Eu异常(δEu=0.74~0.92)、富集大离子亲石元素(LINE),而亏损高场强元素(HFSE),尤其强烈亏损Nb和Ta.Sr-Nd-Pb同位素组成表明,安山岩(87Sr/86Sr)i变化范围为0.70454~0.70483;εNd(t)变化范围为0.97~3.17;初始206Pb/204Pb、207Pb/204Pb和208Pb/204Pb组成变化范围分别为18.17~18.28、15.50~15.60和38.02~38.29.岩石学和地球化学综合研究表明,大兴安岭早白垩世安山岩的岩性主要为钙碱性系列-钾玄岩系列,安山质岩浆来源于富集LILE和水的岩石圈地幔.结合前人资料及本文研究成果,初步认为研究区安山岩形成于板内伸展环境,在岩石圈伸展和减薄背景下,软流圈地幔的上涌和地温梯度增高导致上覆岩石圈地幔中的低熔组分(水和LILE富集的交代地幔)发生部分熔融而形成.  相似文献   
6.
During the Jurassic the major tectonic units of the Great Caucasus (Bechasyn, Front Range, Main Range and Southern Slope zone) were affected by intensive magmatic activity. Magmatism within the Bechasyn zone, the northernmost unit, which represents the southern part of the Variscan-consolidated Skythian platform is considered here. With the beginning of the Early Jurassic this zone was reactivated by subsidence, accompanied by the deposition of epicontinental shallow water sediments. The Lower Jurassic portion of this sedimentary pile was intruded by numerous sills which display a clear temporal and spatial evolution. The older basic rocks are lower in the profile than the younger, more acidic rocks. A set of 75 samples, representing all exposed sills and their feeder-dikes, was analyzed for major and 21 trace elements. All samples appear more or less affected by alteration under lower greenschist facies conditions. However, these alterations essentially took place on local scales and did not affect the overall chemistry. According to their main element composition the rocks constitute a calc-alkaline series ranging from basaltic—andesitic to rhyolitic. Most of the samples are andesites. Chemically, these andesites closely resemble modern orogenic andesites occurring at convergent plate margins. Altogether, the field evidence and the chemical and mineralogical data obtained show the investigated rocks to be comagmatic and derived from basalt—andesitic initial melts by magmatic fractionation processes. Tholeiitic melts have to be considered as parental magmas, which according to the trace element characteristics of the basalt-andesitic rocks, were generated from an enriched peridotitic mantle source. 87Sr/86Sr isotope ratios and 18O values confirm the mantle origin of this rock series. The observed compositional evolution can be explained as a result of olivine and clinopyroxene fractionation of the tholeitic melts followed by amphibole and plagioclase separation. 40Ar/39Ar measurements on biotite and plagioclase phenocrysts separated from these rocks vary between 190 and 180 Ma and thereby place the magmatic activity in the late Early Jurassic, in good agreement with the stratigraphic observations. Genetically, the calc-alkaline rocks are related to a subduction zone of the Andean type. Their chemical and isotopic compositions and their age setting corroborate the plate tectonic models for the evolution of the Caucasus orogenic belt during the Jurassic.Dedicated to the late A. M. Borsuk, initiator of the study  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号