首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2019年   1篇
  2013年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Gold deposits in the Agnew district display markedly different structural styles. The Waroonga and Songvang deposits are hosted in layer-parallel extensional shears formed under highly ductile conditions. In contrast, the New Holland–Genesis deposits are shallow-dipping quartz-filled brittle fractures and breccia zones that cut across the tightly folded bedding and formed during east–west compression. It is difficult to attribute their formation to a single compressive event. The Waroonga and Songvang deposits formed during D1 extension, uplift and exhumation of the Agnew granitic complex and formation of the Scotty Creek Basin at ca 2670–2660?Ma. The New Holland–Genesis deposits formed during east–west D3 compression at about ca 2650–2630?Ma. An S1 foliation wraps around the Agnew granitic complex and L1 stretching lineations form a radial pattern around the granite, consistent with formation during D1 uplift of the composite granite body. Uplift and erosion of granite bodies in the surrounding area provide a source for the granite clasts in the upper parts of the Scotty Creek Basin. As clasts in the basin are undeformed, no significant deformation occurred prior to the uplift and erosion of the source granites in this area. Syn-tectonic emplacement of the Lawlers Tonalite during formation of the Scotty Creek Basin at ca 2665?Ma may have provided a good heat/fluid source for the mineralising systems during the first gold event. The distribution of the large deposits along the western edge of the Agnew granitic complex indicates that the extensional shear along the granite contact is a first-order control on gold deposition by providing a conduit for rising hydrothermal fluids. The northerly trend of high-grade shoots in the Waroonga deposit coincides with early north-trending growth faults, which are also likely fluid conduits.  相似文献   
2.
The Agnew–Wiluna greenstone belt in the Yilgarn Craton of Western Australia is the most nickel-sulfide-endowed komatiite belt in the world. The Agnew–Wiluna greenstone belt contains two mineralised units/horizons that display very different volcanological and geochemical features. The Mt Keith unit comprises >500 m-thick spinifex-free adcumulate-textured lenses, which are flanked by laterally extensive orthocumulate-textured units. Spinifex texture is absent from this unit. Disseminated nickel sulfides, interstitial to former olivine crystals, are concentrated in the lensoidal areas. Massive sulfides are locally present along the base or margins of the lenses or channels. The Cliffs unit is locally >150 m thick and comprises a sequence of differentiated spinifex-textured flow units. The basal unit is the thickest, and contains basal massive nickel-sulfide mineralisation. The Mt Keith and Cliffs units display important common features: (i) MgO contents of 25–30% in inferred parental magmas; and (ii) Al/Ti ratios of ~20 (Munro-type). However, the Mt Keith unit is highly crustally contaminated (e.g. LREE-enriched, high HFSEs), whereas the Cliffs unit does not display evidence of significant crustal assimilation. We argue that the distinct trace-element concentrations and profiles of the two komatiite units reflect their different emplacement style and country rocks: the Mt Keith unit is interpreted to have been emplaced as an intrusive sill into dacitic volcanic units whereas the Cliffs unit was extruded as lava flow onto tholeiitic basalts in a subaqueous environment. The mode of emplacement and nature of country rock is the single biggest factor in controlling mineralisation styles in komatiites. On the other hand, evidence of crustal contamination does not necessarily provide information of the prospectivity of komatiites to host Ni–Cu–(PGE) mineralisation, despite being a good proxy for the style of komatiite emplacement and the nature of country rocks.  相似文献   
3.
Physical property measurements provide a critical link between geological observations and geophysical measurements and modelling. To enhance the reliability of gravity and magnetic modelling in the Yilgarn Craton's Agnew–Wiluna Greenstone Belt, mass and magnetic properties were analysed on 157 new rock samples and combined with an existing corporate database of field measurements. The new samples include sulfide ore, serpentinised and olivine-bearing ultramafic host-rocks, granitoid, and felsic and mafic volcanic and volcaniclastic country rock. Synthesis of the data provides a useful resource for future geophysical modelling in the region. Several rock types in the region have sufficiently distinct physical properties that a discriminant diagram is proposed to facilitate a basic classification of rock types based on physical properties. However, the accumulation of emplacement, metamorphic, hydrothermal and structural processes has complicated the physical properties of the rocks by imposing duplicate and sometimes opposing physical property trends. The data confirm that massive sulfide and ultramafic rocks have the most distinctive mass and magnetic properties but with variability imposed by their complex history. Sulfide content imposes the strongest control on densities, but can only be identified when comprising >10 vol% of the rock. The pyrrhotite-rich Ni-sulfide assemblages generally have similar magnetic properties to the host ultramafic rocks, but can have much lower susceptibilities where the thermal history of the rocks has favoured development of hexagonal pyrrhotite over monoclinic pyrrhotite. In ultramafic rocks that contain <10 vol% sulfides, density and susceptibility are primarily controlled by serpentinisation, with olivine breaking down to serpentine and magnetite in the presence of water. Serpentinisation dramatically lowered densities and increased susceptibilities, but had limited influence on the intensity of remanent magnetisation. All ultramafic rocks contain multidomain magnetite, and most contain low coercivity grains prone to overprinting by in situ viscous remanent magnetisation or drilling-induced isothermal remanent magnetisation during extraction. Despite the low coercivities, Koenigsberger ratios of 1–20 are observed indicating that viscous remanent magnetisation aligned parallel to the present Earth field must be considered in any magnetic modelling. It is also noted that coarser-grained intrusive varieties of all rock types (e.g. granite, gabbro) show remanent magnetisation intensities 1–2 orders of magnitude greater than their extrusive equivalents (felsic and basaltic volcanics).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号