首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
地质学   4篇
  2019年   2篇
  2017年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Carbonate aeolian deposits are common along arid to semiarid, wind-exposed, present-day coastlines bordered by productive carbonate ramps. Lithified carbonate dunes (aeolianites) have been described around the world in marine terraces of Quaternary age, but these deposits have seldom been identified in the Pre-Quaternary record. Several authors have suggested that this scarcity reflects that these deposits form and are preserved only during icehouse periods characterized by high-amplitude sea-level changes. Others [e.g. McKee and Ward Carbonate Depositional Environments (1983) , AAPG Memoirs, Vol. 33, pp. 131–170] suggest that the scarcity of aeolianites in the Pre-Quaternary record could reflect the ‘great difficulty in recognising wind blown carbonate deposits and in differentiating between them [aeolianites] and other carbonate sands of nearshore environments’. It has been considered that carbonate shoreface/foreshore deposits are very difficult to discriminate petrographically from backshore deposits. This petrographic study of recent sediments from the shoreface to backshore along the northern coast of Chrissi Island, Crete, confirms that carbonate aeolian sands can be very easily misinterpreted as shoreface deposits. Textural examination of thin sections by image analysis techniques indicates, however, that grain orientation patterns differ between facies. Shoreface deposits exhibit a unimodal distribution of grain orientation (flat rose diagram), whereas backshore deposits show a tendency towards a bimodal distribution with a significant proportion of vertical grains. This observation has been confirmed in Pleistocene aeolianites from Tunisia and Western Australia. Grain verticality thus seems to be a reliable criterion for discriminating wind-lain carbonate bodies from shoreface deposits. Vertical grains in aeolian carbonate deposits could reflect gravity effects (e.g. reorientation of grains because of meteoric water percolation and air pull-up). Laboratory experiments conducted on carbonate sands under the action of percolating waters confirm this hypothesis. This reorganization process is preferentially developed in recently deposited and loosely packed sands resulting from grainfall and/or grainflow. In addition, this suggests that the presence of vertical grain orientation might be an indicator of the frequency and intensity of rainfalls during deposition.  相似文献   
2.
Coastal dune systems consisting of allochemical grains are important sedimentary archives of Pleistocene age in both of the hemispheres between the latitudes of 20° to 40°. The south Saurashtra coast in western India exhibits a large section of Middle Pleistocene aeolianites in the form of coastal cliffs, which is famous as ‘Miliolite’. Miliolites of Gopnath in south‐east Saurashtra are the oldest known coastal aeolianite deposits (age >156 ka which corresponds to Marine Isotope Stage 6) in western India. Aeolian deposits of similar ages have also been reported from the Thar Desert in north‐west India and from Southern Arabia which were largely controlled by the south‐west monsoon wind system that affects the entire belt corresponding to Sahara–Sahel, the Arabian Peninsula and north‐western India. Miliolite deposits in Gopnath are characterized by grainfall, grainflow and wind ripple laminations. At least three types of aeolian bounding surfaces have been identified. Five major facies have been identified which represent the dune and interdune relationship within the coastal aeolian system. The major dune bodies are identified as transverse dune types. The Gopnath aeolianites were deposited under dominantly dry aeolian conditions. Facies association reveals two different phases of aeolian accumulation, namely initiation of aeolian sedimentation after a prolonged hiatus and the establishment of a regularized aeolian sedimentation system. While initiation of aeolian sedimentation is marked by vast stretches of sheet sand with occasional dune bodies, the overlying thick, tabular, laterally extensive cross‐stratified units manifest regular aeolian sedimentation. However, the dune building events in Gopnath were interrupted by development of laterally extensive palaeosol horizons. Eustasy and climate exerted the major allogenic controls on the aeolian sedimentation by affecting the sediment budget as well as influencing the sedimentation pattern.  相似文献   
3.
Bermuda is a reef atoll along the northern edge of Caribbean coral province. Although investigated by seismic and some shallow drilling, the Pleistocene marine depositional geohistory is poorly constrained. Islands along the southern rim are built by tropical calcareous aeolianites that range in age from Holocene to early Pleistocene (ca 880 kyr). These dunes are composed of particles that were derived from adjacent Pleistocene marine environments at the time of formation. Thus, the aeolianites should contain a record of marine deposition through the Early to Late Pleistocene. Carbonate grains from all aeolian deposits can, via Ward cluster analysis, be separated into two distinct groups: (i) a Halimeda‐rich group; and (ii) a crustose coralline‐rich group. Distribution of these two groups is interpreted to broadly reflect low‐energy (lagoonal) and high‐energy marginal reef (coralline algae and cup‐reef) environments, respectively. Unlike the beach sources, coral particles are perplexingly absent in the aeolianites. This conundrum is interpreted to partly reflect the domal nature of Bermudan corals, which are not incorporated into aeolian deposits due to their relatively large size. Aeolianites from Marine Isotope Stages 7, 9 and 11 record sediments produced in adjacent shallow marine settings that were similar to those present today. The spatially consistent sediment trends are not, however, present in aeolianites from Marine Isotope Stage 5E, where the aeolian bioclastic components are uniformly rich in Halimeda along both southern and northern shores. Such a distribution, where coralline‐rich sediments would be expected, suggests an extrinsic oceanographic control, interpreted herein to be elevated seawater temperature brought in by the Gulf Stream. This interpretation is consistent with palaeozoological studies of Bermuda, as well as North America, the Mediterranean, Japan and Western Australia.  相似文献   
4.
Calcareous aeolianites are an integral part of many carbonate platforms and ramps. Such limestones are particularly common in heterozoan, Late Cenozoic carbonate systems, and it has been postulated that they could contain a particularly sensitive record of their offshore source. This hypothesis is tested herein by documenting and interpreting part of the most extensive and temporally longest such system in the modern world. The deposits are a combination of extraclasts and biofragments. Extraclasts are detrital quartz, relict allochems, older Pleistocene particles and Oligocene–Miocene limestone clasts. Biofragments are penecontemporaneous coralline algae, echinoderms, small benthic foraminifera, molluscs and bryozoans. The aeolianites differ in composition from distant, open shelf sediments because they contain more mollusc fragments and many fewer bryozoans. This difference is interpreted to be due to (i) most sediment was derived from near‐shore seagrass meadows and macroalgal reefs; (ii) all sediments were modified by hydrodynamics in near‐shore and beach environments; and (iii) fragments of infaunal, beach‐dwelling bivalves were added to the sediment at the strandline. Extraclasts should be expected in older Pleistocene and Cenozoic heterozoan deposits, because the limestones are poorly lithified, largely due to the lack of meteoric cementation, and so easily eroded. Thus, cool‐water aeolianites ought to contain more extraclasts than their warm‐water, tropical cousins. Seagrasses in temperate environments are more productive than in the tropics and thus potentially might contribute many more particles to the beach and dunes than do tropical systems. Although particle breakage in the surf zone cannot be proven, herein the abundance of whole benthic foraminifera and delicate bryozoans implies that suspension and flotsam shoreward transport was an essential process. The similarity of Pleistocene aeolianites over such a long time period herein suggests that the combination of postulated sedimentological, biogenic and hydrodynamic processes could be universally important.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号