首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
地质学   14篇
海洋学   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2005年   1篇
  2000年   1篇
  1999年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Felsite-microgranite dykes, chemically comparable with the Shap swarm and associated with the Shap intrusion, are present in Silurian sediments of the southern Lake District. They were emplaced after the country rocks had undergone Acadian (late Caledonian) folding and cleavage-formation but are themselves weakly cleaved. This confirms a ‘flattened buckle’ model for the Acadian deformation in NW England, which in turn establishes the link between sinistral transpression in this region and the clockwise transection of the folds by cleavage. The evidence also shows that the Acadian cleavage developed episodically, and that the Shap-Skiddaw magmatism occurred during one or more stress-relief episodes. The emplacement age of these intrusions thus constrains the age of the Acadian orogeny in NW England which was late in the Lower Devonian (according to currently available isotopic evidence), significantly later than the Silurian deformation of the Southern Uplands.  相似文献   
2.
Abstract Illite crystallinity (IC) measurements, determination of the proportion of 2M mica-polytypes and organic-matter reflectance measurements establish regional diagenetic/low-grade metamorphic trends for the Taconian and Acadian belts of Gaspé Peninsula. IC varies as a function of many factors besides maximum burial temperature and heating time. Correlation between IC and %2M illite polytypes for the Fortin Group and Temiscouata Formation suggests (i) that the amount of high-grade detrital mica in the samples is low, and (ii) that IC can be used with some confidence as an estimator of regional thermal maturation levels. Correlation of these parameters with available organic reflectance values further supports this assumption. The illites of the Temiscouata and western Fortin groups are mostly phengitic in composition, whereas in the eastern outcrop belt they are more Mg- and Fe-rich (celadonitic), but generally also of lower grade and lower 2M content. The d(060) values for illites measured on the unorientated <2-μm fraction of samples fall between 1.502 and 1.503 Å (range: 1.500–1.504 Å), indicating relatively low octahedral occupancy by Mg and Fe (between one-fifth and one-third of the available spaces). Pyrophyllite and paragonite were not detected. Chlorites are Fe-rich and ripidolitic. The IC map for the Acadian belt of the peninsula displays general congruence between IC contours (2200 sample points) and structural trends for the 27,000-km2 area. The highest grades (anchimetamorphic) are associated with the oldest rocks (Honorat and Matapedia groups) exposed in the cores of major anticlines. Anchimetamorphic grades associated with the western outcrop belt of the Lower Devonian Fortin Group require 7–8 km of subsidence to accommodate sufficient thickness of overlying younger rocks (on top of 4–5 km of Fortin Group deep-water clastics) to explain the grades in terms of burial metamorphism assuming a geothermal gradient of 30° C km?1. The lowest-grade diagenetic rocks occupy a large area in the northeastern part of the peninsula, smaller areas in the northwestern part of the Acadian belt, in the centre of Chaleurs Bay synclinorium, and in the Ordovician Mictaw Group. The contact between the Taconian and Acadian belt is marked by a distinct maturation discontinuity. The Grand Pabos fault juxtaposes rocks of contrasting maturation levels (Matapedia Group against Fortin Group) in the west, but shows no maturation offset further east in the Honorat Group. The fault zone limiting the Fortin Group in the north is also associated with a major IC jump.  相似文献   
3.
New data strongly suggest that the classical spiral garnet porphyroblasts of south-east Vermont, USA, generally did not rotate, relative to geographical coordinates, throughout several stages of non-coaxial ductile deformation. The continuity of inclusion trails (Si) in these porphyroblasts is commonly disrupted by planar to weakly arcuate discontinuities, consisting of truncations and differentiation zones where quartz–graphite Si bend sharply into more graphitic Si. Discontinuous, tight microfold hinges with relatively straight axial planes are also present. These microstructures form part of a complete morphological gradation between near-orthogonally arranged, discontinuous inclusion segments and smoothly curving, continuous Si spirals. Some 2700 pitch measurements of well-developed inclusion discontinuities and discontinuous microfold axial planes were taken from several hundred vertically orientated thin sections of various strike, from specimens collected at 28 different locations around the Chester and Athens domes. The results indicate that the discontinuities have predominantly subvertical and subhorizontal orientations, irrespective of variations in the external foliation attitude, macrostructural geometry and apparent porphyroblast-matrix rotation angles. Combined with evidence for textural zoning, this supports the recent hypothesis that porphyroblasts grow incrementally during successive cycles of subvertical and subhorizontal crenulation cleavage development. Less common inclined discontinuities are interpreted as resulting from deflection of anastomosing matrix foliations around obliquely orientated crystal faces prior to inclusion. Most of the idioblastic garnet porphyroblasts have a preferred crystallographic orientation. Dimensionally elongate idioblasts also have a preferred shape orientation, with long axes orientated normal to the mica folia, within which epitaxial nucleation occurred. Truncations and differentiation zones result from the formation of differentiated crenulation cleavage seams against porphyroblast margins, in association with progressive and selective strain-induced dissolution of matrix minerals and locally also the porphyroblast margin. Non-rotation of porphyroblasts, relative to geographical coordinates, suggests that deformation at the microscale is heterogeneous and discontinuous in the presence of undeformed, relatively large and rigid heterogeneities, which cause the progressive shearing (rotational) component of deformation to partition around them. The spiral garnet porphyroblasts therefore preserve the most complete record of the complex, polyphase tectonic and metamorphic history experienced in this area, most of which was destroyed in the matrix by progressive foliation rotation and reactivation, together with recrystallization.  相似文献   
4.
We report the ages of cleavage development in a normally intractable lower greenschist facies slate belt, the Central Maine-Aroostook-Matapedia belt in east-central Maine. We have attacked this problem by identifying the minimum ages of muscovite in a regional Acadian cleavage (S1) and in a local ductile fault zone cleavage (S2) using 40Ar/39Ar geochronology and the ages of crosscutting plutons. Our success stems from the regional low-grade metamorphism of the rocks in which each crystallization event preserves a40Ar/39Ar crystallization age and not a cooling age. Evidence for recrystallization via a pressure solution mechanism comes from truncations of detrital, authigenic, and in some rocks S1 muscovite and chlorite grains by new cleavage-forming muscovite and chlorite grains. Low-blank furnace age spectra from meta-arkosic and slaty rocks climb from moderate temperature Devonian age-steps dominated by cleavage-forming muscovite to Ordovician age-steps dominated by a detrital muscovite component. S1- and S2-cleaved rocks were hornfelsed by granitoids of ∼407 and 377 Ma, respectively. The combination of these minimum ages with the maximum metamorphic crystallization ages establishes narrow constraints on the timing of these two cleavage-forming events, ∼410 Ma (S1) and ∼380 Ma (S2). These two events coincide in time with a change in the plate convergence kinematics from the arrival of the Avalon terrane (Acadian orogeny), to a right-lateral transpression arrival of the Meguma terrane in the Neoacadian orogeny.  相似文献   
5.
On the Isle of Man, the Early Devonian Peel Sandstones and Early Carboniferous limestones have been deformed in places by folds, cleavage and other structures. The structures in the Peel Sandstones have been attributed to pre‐lithification deformation associated with slumping of the red beds. Here, they are re‐interpreted to be products of post‐lithification deformation, inferred from small‐scale structures and fabrics, which took place in a localized thrust zone. Compression was approximately NW–SE and translation towards the SE. That deformation may have also produced some of the late structures in the Lower Palaeozoic rocks of the island. The minimum age of these post‐Early Devonian structures is unknown but is probably pre‐Carboniferous: they may represent the mid‐Devonian Acadian deformation. The Carboniferous succession is folded in places and contains stylolites and stylolitic cleavage. A stress regime with E–W to WNW–ESE compression is inferred. These structures have orientations and morphologies shown to resemble those in neighbouring parts of southern Britain, where they are attributed mainly to mid‐ to late‐Carboniferous Variscan events. Alternatively, some or all of them might be products of late Mesozoic and Tertiary tectonics recognized elsewhere in the region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
6.
One‐dimensional thermal (1DT) modelling of an Acadian (Devonian) tectonothermal regime in southern Vermont, USA, used measured metamorphic pressures and temperatures and estimated metamorphic cooling ages based on published thermobarometric and geochronological studies to constrain thermal and tectonic input parameters. The area modelled lies within the Vermont Sequence of the Acadian orogen and includes: (i) a western domain containing garnet‐grade pre‐Silurian metasedimentary and metavolcanic rocks from the eastern flank of an Acadian composite dome structure (Rayponda–Sadawga Dome); and (ii) an eastern domain containing similar, but staurolite‐ or kyanite‐grade, rocks from the western flank of a second dome structure (Athens Dome), approximately 10 km farther east. Using reasonable input parameters based on regional geological, petrological and geochronological constraints, the thermal modelling produced plausible PT paths, and temperature–time (T t) and pressure–time (Pt) curves. Information extracted from PT t modelling includes values of maximum temperature and pressure on the PT paths, pressure at maximum temperature, predicted Ar closure ages for hornblende, muscovite and K‐feldspar, and integrated exhumation and cooling rates for segments of the cooling history. The results from thermal modelling are consistent with independently obtained pressure, temperature and Ar cooling age data on regional metamorphism in southern Vermont. Modelling results provide some important bounding limits on the physical conditions during regional metamorphism, and indicate that the pressure contemporaneous with the attainment of peak temperature was probably as much as 2.5 kbar lower than the actual maximum pressure experienced by rocks along various particle paths. In addition, differences in peak metamorphic grade (garnet‐grade versus staurolite‐grade or kyanite‐grade) and peak temperature for rocks initially loaded to similar crustal depths, differences in calculated exhumation rates, and differences in 40Ar/39Ar closure ages are likely to have been consequences of variations in the duration of isobaric heating (or ‘crustal residence periods’) and tectonic unroofing rates. Modelling results are consistent with a regional structural model that suggests west to east younging of specific Acadian deformational events, and therefore diachroneity of attainment of peak metamorphic conditions and subsequent 40Ar/39Ar closure during cooling. Modelling is consistent with the proposition that regional variations in timing and peak conditions of metamorphism are the result of the variable depths to which rocks were loaded by an eastward‐thickening thrust‐nappe pile rooted to the east (New Hampshire Sequence), as well as by diachronous structural processes within the lower plate rocks of the Vermont Sequence.  相似文献   
7.
Metamorphism of the Gile Mountain Formation and Waits River Formation in the Strafford Dome and Townshend-Brownington Syncline in east-central Vermont records two nappe-style events, D1 and D2, followed by doming. D1 formed a muscovite + biotite ± ilmenite schistosity subparallel to compositional layering, SO, and was followed by heating to garnet grade. The temperature and pressure at the end of D1 are estimated to be c . 450 C and 6-8 kbar. D2 variably crenulated and folded S1 during a nearly isothermal pressure increase of 1-2 kbar, calculated from compositions of garnet, which have inclusions trails with progressive crenulation and rotation of the S1 fabric. Similar P-T paths are computed for most of the area, suggesting that the later schistosity developed during emplacement of a regional nappe 3-6 km thick. There is a general lack of D3 (dome-stage) microstructures.
Near the Strafford-Willoughby Arch, staurolite and kyanite overgrew S2 in pelites, and plagioclase with increasing X An overgrew S2 in calcic pelites, reflecting post-D2 heating to a maximum of 550-600 C. Metamorphic pressures at the end of D2 are fairly constant on the west side of the dome, indicating minor dome-stage uplift. In contrast, pressures at the thermal peak of metamorphism decrease by more than 4 kbar east of the dome. The observed pattern of isotherms and isobars is mainly the result of post-metamorphic, differential uplift and unroofing.
Finally, a minor, retrograde metamorphism produced the assemblage albite + epidote + K-feldspar + muscovite + chlorite, with grade increasing east toward the Connecticut River.  相似文献   
8.
The Connecticut Valley–Gaspé (CVG) trough represents a major, orogen-scale Silurian–Devonian basin of the Northern Appalachians. From Gaspé Peninsula to southern New England, the CVG trough has experienced a contrasting metamorphic and structural evolution during the Acadian orogeny. Along its strike, the CVG trough is characterized by increasing strain and polyphase structures, and by variations in the intensity of regional metamorphism and contrasting abundance of c. 390–370 Ma granitic intrusions. In southern Quebec and northern Vermont, a series of NW–SE transects across the CVG trough have been studied in order to better understand these along-strike variations. Detailed structural analyses, combined with phase equilibria modelling, Raman spectrometry, and muscovite 40Ar/39Ar dating highlight a progressive and incremental deformation involving south–north variation in the timing of metamorphism. Deformation evolves from a D1 crustal thickening event which originates in Vermont and progresses to southern Québec where it peaked at 0.6 GPa/380°C at c. 375 Ma. This was followed by a D2 event associated with continuous burial in Vermont from 378 to 355 Ma, which produced peak metamorphic conditions of 0.85 GPa/380°C and exhumation in Quebec from 368 to 360 Ma. The D3 compressional exhumation event also evolved from south to north from 345 to 335 Ma. D1 to D3 deformation events form part of a continuum with an along-strike propagation rate of ~50 km/Ma During D1, the burial depth varied by more than 15 km between southern Quebec and Vermont, and this can be attributed to the occurrence of a major crustal indenter, the Bronson Hill Arc massif, in the New England segment of the Acadian collision zone.  相似文献   
9.
The trace and rare earth elements (REE) analyses were conducted on samples collected from a 30 m core of the Marcellus Shale obtained from Greene County, southwestern Pennsylvania. Our results suggest that organic matter enrichment trends in the Marcellus Shale can be directly linked with the Acadian Orogeny. The Acadian Orogeny has been recognized as a main sediment source for the Marcellus Shale. Synthesis of tectonic history and recent ash bed geochronology, reveals that deposition of the organic carbon-rich (OR) zone (characterized by TOC >4%; located between 2393 m and 2406.5 m core depth) in the studied Marcellus Shale core was coincident with tectonically active and magmatic quiescent period of the Acadian orogeny (ca. 395–380 Ma). This time period also corresponds to the highest rate of mountain building in the Acadian Orogeny. The light rare earth (LREE) and selected trace elemental (e.g., Ta, Cs) composition of the OR zone sediments is similar to that of the bulk continental crust, supporting the lack of magmatic activity in the source area (i.e. Acadian Orogeny). In contrast, subsequent deposition of the organic carbon-poor (OP) sediments (characterized by TOC <4%; located between 2376 m and 2393 m core depth) in the upper Marcellus Shale occurred synchronously with a magmatic active phase (ca. 380–370 Ma) during the Acadian orogeny. The OP zone sediments have LREE and trace elemental composition similar to the average of the upper continental crust, suggesting intrusion of granodiorite rocks during a magmatic active period of Acadian Orogeny. The temporal and geochemical correlation between the Acadian orogenesis and the Marcellus deposition provide evidence for the role of tectonism in the enrichment of organic matter in the Marcellus Shale.  相似文献   
10.
Debacker  T.N.  Sintubin  M.  Verniers  J. 《Geologie en Mijnbouw》1999,78(1):47-56
The presence of convergent cleavage fans in folded Silurian pelitic deposits along the southern extremity of the Brabant Massif has commonly been considered as an indication for a polyphase deformation history. Recent field work on the classic section at Ronquières shows, however, that all the structural elements can be explained by a single progressive deformation, taking place at gradually higher structural levels. This deformation is considered to have occurred at the time of the Acadian orogeny. The section under study contains a fold train of five gentle to open first-order folds, unconformably overlain by gently S-dipping Givetian rocks. Although the Silurian turbidite deposits are predominantly pelitic, the folds are characterized by convergent cleavage fans. The trend of the cleavage fan axes remains constant in the various folds throughout the section. In contrast, the trend of the folds hinge lines gradually changes along the section from a clockwise relation with the cleavage fan axis in the northern part (anticlockwise cleavage transection) towards an anticlockwise relation in the southern part (clockwise cleavage transection). Individual fault/fault intersections have a constant trend throughout the section, parallel to the cleavage fan axes and the mean fold hinge line. Small kink bands and small transverse joints reflect the same structural trend. The coaxial disposition of the structural elements seems at first sight incompatible with the presence of both clockwise and anticlockwise cleavage-transected folds. This disposition may, however, be explained by an en-echelon periclinal nature of the fold train, possibly formed in a slightly constrictional deformation environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号