首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   5篇
  国内免费   1篇
测绘学   1篇
地球物理   19篇
地质学   7篇
海洋学   4篇
综合类   4篇
自然地理   31篇
  2023年   1篇
  2020年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2011年   3篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
To account for elastic and attenuating effects in the elastic wave equation, the stress-strain relationship can be defined through a general, anisotropic, causal relaxation function ijkl (x, ). Then, the wave equation operator is not necessarily symmetric (self-adjoint), but the reciprocity property is still satisfied. The representation theorem contains a term proportional to the history of strain. The dual problem consists of solving the wave equation withfinal time conditions and an anti-causal relaxation function. The problem of interpretation of seismic waveforms can be set as the nonlinear inverse problem of estimating the matter density (x) and all the functions ijkl (x, ). This inverse problem can be solved using iterative gradient methods, each iteration consisting of the propagation of the actual source in the current medium, with causal attenuation, the propagation of the residuals—acting as if they were sources—backwards in time, with anti-causal attenuation, and the correlation of the two wavefields thus obtained.  相似文献   
2.
3.
4.
5.
As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations are estimated from inversions of the receiver function. The crustal shear wave velocities at WNDO and TUNL are vertically homogeneous, with value between 3.5–3.6 km/s down to Moho. This value in the lower crust is lower than the normal value for the lower crust of continents, which is consistent with the observed strong Sn attenuation in this region. The velocity structure at XIGA shows a velocity discontinuity at depth of 20 km and high velocity value of 4.0 km/s in the midcrust between 20–30 km depth. Similar results are obtained from a DSS profile in southern Tibet. The velocity under XIGA decreases below a depth of 30 km, reaching the lowest value of 3.2 km/s between 50–55 km. depth. This may imply that the Indian crust underthrusts the low part of Tibetan crust in the southern Plateau, forming a “double crust”. The crustal thickness at each of these sites is: WNDO, 68 km; TUNL, 70 km; XI-GA, 80 km. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 581–592, 1992.  相似文献   
6.
7.
由于印度-欧亚板块碰撞,位于板块边界带的喜马拉雅地区大震频繁,但对其活动性的认识仍十分有限.2015年4月25日尼泊尔中东部地区时隔80年再次发生8级地震,为研究板缘地震提供了一次难得机遇.本文用西藏和尼泊尔的GPS连续观测数据和全球分布的远震地震波记录联合反演此次特大地震的破裂过程,结果显示此次地震发生在印度板块与青藏高原接触边界面——喜马拉雅主滑脱断层上.北倾11°、近东西(295°)走向的断层面破裂约100km长(博卡拉到加德满都),130km宽(从加德满都深入我国西藏吉隆县),破裂以逆冲滑动为主,平均幅度达到2.4m,释放的地震矩高达9.4×1020 N·m.反演结果还显示,震源体主要破裂分布深度范围为5~25km,应无地表破裂,属于一次盲地震.基于GPS资料推测的地壳现今运动速率及1833年地震的震源位置,我们推测地震在此次地震破裂区域复发的周期可能为150~200a,而极震区以南的深部滑脱断层仍保持闭锁,未来仍有导致灾害性大震的可能性.  相似文献   
8.
《Marine Geodesy》2013,36(3-4):201-238
TOPEX/Poseidon is a well known success, with the operational altimeter (TOPEX) and the experimental one (Poseidon-1), providing data of unprecedented quality. However, there are two major differences between the TOPEX and Poseidon-1 radar altimeters on board TOPEX/Poseidon. The first is related to the estimated range noise; the second is linked to the sea-state bias (SSB) model estimates. Since the recent launch of the Jason-1 radar altimeter (also called Poseidon-2), we have been cross-comparing these three systems to better characterize each of them. Analyzing standard user products, we have found that Jason-1 is behaving like Poseidon-1 and thus shows the same observed differences when compared with TOPEX. A comparative analysis of their features was performed, starting from the on-board acquisition of the ocean return and ending with the ground generation of the high level accuracy oceanographic product. The results lead us to believe that the sources for these differences lie in both the waveform tracking processing and the presence or abscence of a retracking procedure whether on-board or on ground. Because Poseidon-1 and Jason-1 waveforms are retracked while TOPEX waveforms are not in the products distributed to the users, we have applied the same ground retracking algorithm to the waveforms of the three radar altimeters to get consistent data sets. The analysis of the outputs has shown that: (a) the noise level for the three radar altimeters is definitively the same, and (b) the source of the relative SSB between Jason-1 and TOPEX lies in the different behavior of the on-board tracking softwares.  相似文献   
9.
王志章  韩海英 《地学前缘》2011,18(5):296-302
现代油藏描述提倡勘探开发一体化,真正实现测井与地震信息匹配,实现静态信息与动态信息结合,最终由定性走向定量。重点阐述了现代油藏描述中,通过集成高分辨率的岩石物理数据、中分辨率的测井数据及低分辨率的地震数据,采用储层自动划分对比及储层结构分析技术、沉积微相自动识别技术、波形差异分析法预测高产气区技术对不同勘探开发阶段、不...  相似文献   
10.
Use of tsunami waveforms for earthquake source study   总被引:1,自引:0,他引:1  
Tsunami waveforms recorded on tide gauges, like seismic waves recorded on seismograms, can be used to study earthquake source processes. The tsunami propagation can be accurately evaluated, since bathymetry is much better known than seismic velocity structure in the Earth. Using waveform inversion techniques, we can estimate the spatial distribution of coseismic slip on the fault plane from tsunami waveforms. This method has been applied to several earthquakes around Japan. Two recent earthquakes, the 1968 Tokachi-oki and 1983 Japan Sea earthquakes, are examined for calibration purposes. Both events show nonuniform slip distributions very similar to those obtained from seismic wave analyses. The use of tsunami waveforms is more useful for the study of unusual or old earthquakes. The 1984 Torishima earthquake caused unusually large tsunamis for its earthquake size. Waveform modeling of this event shows that part of the abnormal size of this tsunami is due to the propagation effect along the shallow ridge system. For old earthquakes, many tide gauge records exist with quality comparable to modern records, while there are only a few good quality seismic records. The 1944 Tonankai and 1946 Nankaido earthquakes are examined as examples of old events, and slip distributions are obtained. Such estimates are possible only using tsunami records. Since tide-gauge records are available as far back as the 1850s, use of them will provide unique and important information on long-term global seismicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号