首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   54篇
  国内免费   19篇
测绘学   4篇
大气科学   35篇
地球物理   164篇
地质学   24篇
海洋学   8篇
天文学   2篇
综合类   4篇
自然地理   15篇
  2023年   1篇
  2022年   1篇
  2021年   21篇
  2020年   15篇
  2019年   13篇
  2018年   9篇
  2017年   14篇
  2016年   12篇
  2015年   9篇
  2014年   16篇
  2013年   21篇
  2012年   9篇
  2011年   7篇
  2010年   6篇
  2009年   12篇
  2008年   10篇
  2007年   6篇
  2006年   15篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
排序方式: 共有256条查询结果,搜索用时 31 毫秒
1.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   
2.
Based on the Intensive Field Campaign(IFC-1)data of Boreal Ecosystem-Atmosphere Study(BOREAS).a three-dimensional meso-β scale model is used to simulate the effect of boreal forests onthe lower atmosphere.A fine horizontal resolution of 2 km×2 km is used in order to distinguish thevegetative heterogeneity in the boreal region.A total of 20×25 grid points cover the entire sub-modeling area in BOREAS' South Study Area(SSA).The ecosystem types and their coverage ineach grid square are extracted from the North American Land Cover Characteristics Data Base(NALCCD)generated by the U.S.Geographical Survey(USGS)and the University of Nebraska-Lincoln(UNL).The topography of the study area is taken from the Digital Elevation Map(DEM)of USGS.The model outputs include the components of the energy balance budget within the canopyand at the ground.the turbulence parameters in the atmospheric boundary layer and the wind.temperature and humidity profiles extending up to a height of 1500 m.In addition to the fine timeand spatial step,the unique feature of the present model is the incorporation of both dynamic andbiological effects of the Boreal forest into the model parameterization scheme.The model resultscompare favorably with BOREAS' IFC-1 data in 1994 when the forest was in the luxuriant growingperiod.  相似文献   
3.
National flood discharge mapping in Austria   总被引:5,自引:0,他引:5  
This article presents the approach and the results of a study in which 30, 100 and 200 year return period flood discharges were estimated for 26,000 km of Austrian streams. Three guiding principles were adopted: combination of automatic methods and manual assessments by hydrologists to allow speedy processing and account for the local hydrological situation; combination of various sources of information including flood peak samples, rainfall data, runoff coefficients and historical flood data; and involvement of the Hydrographic Services to increase the accuracy and enhance the acceptance of results. The flood discharges for ungauged catchments were estimated by the Top-kriging approach with manual adjustment to the local flood characteristics. The adopted combination approach proved to be very efficient both in terms of the project time required and in terms of the accuracy and acceptability of the estimated flood discharges of given return periods.  相似文献   
4.
5.
Fisheries in boreal ecosystems   总被引:2,自引:1,他引:2  
  相似文献   
6.
Oil sands mining in Alberta transforms the boreal landscape of forests and wetlands into open pits, tailings ponds and overburden piles. Whereas reclamation efforts have primarily focused on upland forests, rebuilding wetland systems has recently become a motivation for research. Wetland creation and sustainability in this region is complicated by the sub‐humid climate and salinity of underlying mining material. In 2012, Syncrude Canada Ltd. completed the construction of the Sandhill Fen Watershed (SFW), a 52‐ha upland‐wetland system to evaluate wetland reclamation strategies on soft tailings. SFW includes an active pumping system, upland hummocks, a fen wetland and underdrains. To evaluate the influence of management practices on the hydrology of the system, this study reports the water balance from January 2013 to December 2014, the first 2 years after commissioning. A semi‐distributed approach was taken to examine the fluxes and stores of water in uplands and lowlands. Natural and artificial inputs and outputs were measured using a series of precipitation gauges and pumps, and evapotranspiration was quantified using three eddy covariance towers. A series of near surface wells recorded water table position. Both 2013 and 2014 were normal rainfall years, with 2013 having more and 2014 less snow than normal. In 2013, inflow/outflow from pumping was the predominant hydrological fluxes, resulting in considerable variability in water table position and storage changes throughout the summer. In 2014, the artificial addition of water was negligible, yet the water table remained near the surface in lowland locations, suggesting that wetland conditions could be maintained under current conditions. Evapotranspiration rates between uplands and lowlands were similar between years and sites, ranging from 2.2 ± 1.8 to 2.5 ± 1.2 mm/day and were largely controlled by climate. These rates were less than nearby older upland systems, suggesting that water balance partitioning will change as vegetation develops. Comparison between years and with natural systems provides insight on how management practices influence hydrologic dynamics and the overall water balance of the SFW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
7.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   
8.
Abstract

Sediment yields from and sediment transfer within catchments of very low relief and gradient, which make up about 50% of Earth’s surface, are poorly documented and their internal sediment dynamics are poorly known. Sediment sources, their proportionate contributions to valley floors and sediment yield, and storage are estimated using fallout radionuclides 210Pb(ex) and 137Cs in the catchments that drain into Darwin Harbour, northern Australia, an example of this understudied catchment type that appears to be globally at the extreme end of this category of catchments. Unchannelled grassy valley floors (dambos, or seasonal wetlands) trap ~90% of the sediment delivered from hillslopes by sheet and rill erosion. Further down valley, small channels transport ~10% of the sediment that escapes from the dambos, and the remaining sediment comes from erosion of the channels. In this case, the fractional sediment storage is very high as a result of the existence of dambos, a landform that depends for its existence on low gradients.  相似文献   
9.
Fine sediment is a dynamic component of the fluvial system, contributing to the physical form, chemistry and ecological health of a river. It is important to understand rates and patterns of sediment delivery, transport and deposition. Sediment fingerprinting is a means of directly determining sediment sources via their geochemical properties, but it faces challenges in discriminating sources within larger catchments. In this research, sediment fingerprinting was applied to major river confluences in the Manawatu catchment as a broad‐scale application to characterizing sub‐catchment sediment contributions for a sedimentary catchment dominated by agriculture. Stepwise discriminant function analysis and principal component analysis of bulk geochemical concentrations and geochemical indicators were used to investigate sub‐catchment geochemical signatures. Each confluence displayed a unique array of geochemical variables suited for discrimination. Geochemical variation in upstream sediment samples was likely a result of the varying geological source compositions. The Tiraumea sub‐catchment provided the dominant signature at the major confluence with the Upper Manawatu and Mangatainoka sub‐catchments. Subsequent downstream confluences are dominated by the upstream geochemical signatures from the main stem of Manawatu River. Variability in the downstream geochemical signature is likely due to incomplete mixing caused in part by channel configuration. Results from this exploratory investigation indicate that numerous geochemical elements have the ability to differentiate fine sediment sources using a broad‐scale confluence‐based approach and suggest there is enough geochemical variation throughout a large sedimentary catchment for a full sediment fingerprint model. Combining powerful statistical procedures with other geochemical analyses is critical to understanding the processes or spatial patterns responsible for sediment signature variation within this type of catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
The isotopic composition of precipitation (D and 18O) has been widely used as an input signal in water tracer studies. Whereas much recent effort has been put into developing methodologies to improve our understanding and modelling of hydrological processes (e.g., transit‐time distributions or young water fractions), less attention has been paid to the spatio‐temporal variability of the isotopic composition of precipitation, used as input signal in these studies. Here, we investigated the uncertainty in isotope‐based hydrograph separation due to the spatio‐temporal variability of the isotopic composition of precipitation. The study was carried out in a Mediterranean headwater catchment (0.56 km2). Rainfall and throughfall samples were collected at three locations across this relatively small catchment, and stream water samples were collected at the outlet. Results showed that throughout an event, the spatial variability of the input signal had a higher impact on hydrograph separation results than its temporal variability. However, differences in isotope‐based hydrograph separation determined preevent water due to the spatio‐temporal variability were different between events and ranged between 1 and 14%. Based on catchment‐scale isoscapes, the most representative sampling location could also be identified. This study confirms that even in small headwater catchments, spatio‐temporal variability can be significant. Therefore, it is important to characterize this variability and identify the best sampling strategy to reduce the uncertainty in our understanding of catchment hydrological processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号