首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26169篇
  免费   4883篇
  国内免费   5698篇
测绘学   1833篇
大气科学   3517篇
地球物理   6622篇
地质学   11601篇
海洋学   6087篇
天文学   356篇
综合类   1787篇
自然地理   4947篇
  2024年   145篇
  2023年   446篇
  2022年   887篇
  2021年   1045篇
  2020年   1048篇
  2019年   1252篇
  2018年   1006篇
  2017年   1070篇
  2016年   1143篇
  2015年   1247篇
  2014年   1488篇
  2013年   1381篇
  2012年   1644篇
  2011年   1603篇
  2010年   1373篇
  2009年   1638篇
  2008年   1503篇
  2007年   1863篇
  2006年   1764篇
  2005年   1598篇
  2004年   1491篇
  2003年   1387篇
  2002年   1242篇
  2001年   979篇
  2000年   870篇
  1999年   802篇
  1998年   716篇
  1997年   645篇
  1996年   617篇
  1995年   535篇
  1994年   489篇
  1993年   417篇
  1992年   352篇
  1991年   311篇
  1990年   185篇
  1989年   207篇
  1988年   125篇
  1987年   83篇
  1986年   43篇
  1985年   27篇
  1984年   14篇
  1983年   12篇
  1982年   6篇
  1980年   6篇
  1979年   10篇
  1978年   9篇
  1977年   4篇
  1954年   13篇
  1877年   2篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
The response of an ideal elastic half‐space to a line‐concentrated impulsive vector shear force applied momentarily is obtained by an analytical–numerical computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. The shear force is concentrated along an infinite line, drawn on the surface of the half‐space, while being normal to that line as well as to the axis of symmetry of the half‐space. An exact loading model is introduced and built into the computational method for this shear force. With this model, a compatibility exists among the prescribed applied force, the geometric decay of the shear stress component at the precursor shear wave, and the boundary conditions of the half‐space; in this sense, the source configuration is exact. For the transient boundary‐value problem described above, a wave characteristics formulation is presented, where its differential equations are extended to allow for strong discontinuities which occur in the material motion of the half‐space. A numerical integration of these extended differential equations is then carried out in a three‐dimensional spatiotemporal wavegrid formed by the Cartesian bicharacteristic curves of the wave characteristics formulation. This work is devoted to the construction of the computational method and to the concepts involved therein, whereas the interpretation of the resultant transient deformation of the half‐space is presented in a subsequent paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
Afforestation has been suggested as a means of improving soil and water conservation in north‐western China, especially on the Loess Plateau. Understanding of the hydrological responses to afforestation will help us develop sustainable watershed management strategies. A study was conducted during the period of 1956 to 1980 to evaluate runoff responses to afforestation in a watershed on the Loess Plateau with an area of 1·15 km2, using a paired watershed approach. Deciduous trees, including locust (locusta L.), apricot (praecox L.) and elm (ulmus L.), were planted on about 80% of a treated watershed, while a natural grassland watershed remained unchanged. It was estimated that cumulative runoff yield in the treated watershed was reduced by 32% as a result of afforestation. A significant trend was also observed that shows annual runoff reduction increases with the age of the trees planted. Reduction in monthly runoff occurred mainly from June to September, which was ascribed to greater rainfall and utilization by trees during this period. Afforestation also resulted in reduction in the volume and peak flow of storm runoff events in the treated watershed with greater reduction in peak flow. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
5.
Spectral analysis of the components of the relative atmospheric angular momentum vector is performed based on the series of these components for the 6 h intervals within the period of 1958–2000. These series have been computed in the Subbureau of the Atmospheric Angular Momentum of the International Earth Rotation Service using the NCEP/NCAR reanalysis of atmospheric observations. The basic harmonics of diurnal tides are determined. New results on the fortnight's and week's duration oscillations of the equatorial components of the atmospheric angular momentum are obtained. The zonal tides transformation mechanisms in the atmosphere are discussed. It is shown that the main mechanism of the zonal tides effect on the atmospheric variability is the amplitude modulation of daily oscillations of the relative atmospheric angular momentum. The effects of the atmospheric tides on the Earth rotation are discussed.  相似文献   
6.
本文论述了保安地区火山岩的地质、岩石、副矿物、岩石化学、微量元素、稀土元素、稳定同位素、火山岩相及火山机构等特征。并对其演化规律、形成机制与成矿作用的关系,作了初步探讨。  相似文献   
7.
本文对南海中部陆坡区和海盆区的5个岩芯中的 Si,Al,Fe,Mn,Ca,Mg 和 CaCO_3成分做了分析,并对其分布特征与有关影响因素进行了讨论。受沉积区环境差异的影响,元素的分布具有区域性特征;受海区特定地理位置的影响,元素的分布呈现出过渡性特征(浅海到大洋的过渡);受沉积过程中环境变化的影响,元素的分布展示了周期性变化或旋回性。根据岩芯中元素的分布特征,并参考有关古地磁,氧碳同位素和钙质超微化石的测试分析结果,将本区岩芯划分为14层地球化学层,并将本区划分为两个沉积地球化学区,揭示了早更新世以来本区沉积环境的变化和存在的两种沉积模式。  相似文献   
8.
Nonlinear interactions between large waves and freely floating bodies are investigated by a 2D fully nonlinear numerical wave tank (NWT). The fully nonlinear 2D NWT is developed based on the potential theory, MEL/material-node time-marching approach, and boundary element method (BEM). A robust and stable 4th-order Runge–Kutta fully updated time-integration scheme is used with regriding (every time step) and smoothing (every five steps). A special φn-η type numerical beach on the free surface is developed to minimize wave reflection from end-wall and wave maker. The acceleration-potential formulation and direct mode-decomposition method are used for calculating the time derivative of velocity potential. The indirect mode-decomposition method is also independently developed for cross-checking. The present fully nonlinear simulations for a 2D freely floating barge are compared with the corresponding linear results, Nojiri and Murayama’s (Trans. West-Jpn. Soc. Nav. Archit. 51 (1975)) experimental results, and Tanizawa and Minami’s (Abstract for the 6th Symposium on Nonlinear and Free-surface Flow, 1998) fully nonlinear simulation results. It is shown that the fully nonlinear results converge to the corresponding linear results as incident wave heights decrease. A noticeable discrepancy between linear and fully nonlinear simulations is observed near the resonance area, where the second and third harmonic sway forces are even bigger than the first harmonic component causing highly nonlinear features in sway time series. The surprisingly large second harmonic heave forces in short waves are also successfully reproduced. The fully updated time-marching scheme is found to be much more robust than the frozen-coefficient method in fully nonlinear simulations with floating bodies. To compare the role of free-surface and body-surface nonlinearities, the body-nonlinear-only case with linearized free-surface condition was separately developed and simulated.  相似文献   
9.
P. Bonneton   《Ocean Engineering》2007,34(10):1459-1471
In this paper, we analyse the ability of the nonlinear shallow-water (NSW) equations to predict wave distortion and energy dissipation of periodic broken waves in the inner surf zone. This analysis is based on the weak-solution theory for conservative equations. We derive a new one-way model, which applies to the transformation of non-reflective periodic broken waves on gently sloping beaches. This model can be useful to develop breaking-wave parameterizations (in particular broken-wave celerity expression) in both time-averaged wave models and time-dependent Boussinesq-type models. We also derive a new wave set-up equation which provides a simple and explicit relation between wave set-up and energy dissipation. Finally, we compare numerical simulations of both, the NSW model and the simplified one-way model, with spilling wave breaking experiments and we find a good agreement.  相似文献   
10.
Except the commonly selected pressure transfer function derived from the linear wave theory, a previous study on the pressure transfer function for recovering surface wave from underwater pressure transducer suggested that the pressure transfer function is a function of frequency parameter only. With careful analysis, this study showed that the pressure transfer function should include a transducer submergence parameter as that given by the linear theory. It was found that the previously suggested empirical formula should be restricted to measurements with the pressure transducer close to the surface; otherwise overestimation of wave height would result. Field measurements were carried out with an acoustic wave gauge and a synchronized pressure transducer located at various depths with submergence parameter close to 1 (near the sea floor). It was shown that the previous one-parameter empirical formula might overestimate the significant wave height by more than 30%. This study found that with deep-water wave bursts excluded, the transfer function based on the linear wave theory provided a fairly good estimation on the significant wave heights, with an average deviation of 3.6%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号