首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   767篇
  免费   118篇
  国内免费   171篇
测绘学   11篇
大气科学   245篇
地球物理   348篇
地质学   148篇
海洋学   215篇
天文学   4篇
综合类   30篇
自然地理   55篇
  2024年   2篇
  2023年   5篇
  2022年   8篇
  2021年   27篇
  2020年   34篇
  2019年   23篇
  2018年   25篇
  2017年   17篇
  2016年   23篇
  2015年   24篇
  2014年   52篇
  2013年   55篇
  2012年   37篇
  2011年   49篇
  2010年   39篇
  2009年   61篇
  2008年   62篇
  2007年   61篇
  2006年   75篇
  2005年   52篇
  2004年   44篇
  2003年   35篇
  2002年   35篇
  2001年   38篇
  2000年   20篇
  1999年   30篇
  1998年   25篇
  1997年   23篇
  1996年   17篇
  1995年   9篇
  1994年   7篇
  1993年   13篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1954年   1篇
排序方式: 共有1056条查询结果,搜索用时 15 毫秒
1.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
2.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
3.
This paper is a continuation of previous research, which obtained a convenient solution for arbitrary surface fluxes before ponding. By means of Fourier Transformation this has been extended to derive analytical solutions of a linearized Richards' equation for arbitrary input fluxes after surface saturation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
4.
Six anchor stations in the St. Lawrence River from the outflow of Lake Ontario to Quebec City, were occupied for ca. 24 hours in June 1987 during low flow conditions. Samples of water and suspended particulate matter were separated by continuous-flow centrifugation, and were collected every two hours.During this sampling period, fluxes of dissolved forms of zinc, copper and nickel increased in Lac St. François and downstream relative to the sum of the fluxes for the two upstream stations at the outflow of Lake Ontario. Increases in the flux of dissolved zinc and copper were pronounced below Montreal and above Lac St. Pierre. For particulate forms of metals, all five metals show that there are significant inputs in the section of the St. Lawrence River between Lac St. François and the station just above the entrance to Lac St. Pierre.The average concentrations of dissolved cadmium, lead, zinc, copper and nickel ranged from 7–23 ng/l; 9–35 ng/l; 0.434–0.939 g/l; 0.15–0.89 g/l and 0.58–1.12 g/l respectively.Regression analysis of the dissolved and particulate metal concentrations suggests that the concentration of dissolved cadmium, lead, zinc and nickel can be predicted from the regression equation and the determination of particulate metal concentration. This prediction appears to be independent of the suspended particulate matter concentration which varies from ca. 1 to 10 mg/l from the outflow of Lake Ontario to Québec City.  相似文献   
5.
Water column concentrations of total suspended solids (TSS), particulate organic carbon (POC) and particulate nitrogen (PN) were measured at three different depths in four different locations bracketing the estuarine turbidity maximum (ETM) along the main channel of a temperate riverine estuary (Winyah Bay, South Carolina, USA). Measurements were carried out over full tidal cycle (over 24 h). Salinity, temperature, current magnitude and direction were also monitored at the same time throughout the water column. Tidally averaged net fluxes of salt, TSS, POC and PN were calculated by combining the current measurements with the concentration data. Under the extreme low river discharge conditions that characterized the study period, net landward fluxes of salt were measured in the lower part of the study area, suggesting that the landward transport through the main channel of the estuary was probably balanced by export out through the sides. In contrast, the net fluxes of salt in the upper reaches of the study area were near zero, indicating a closed salt balance in this part of the estuary. In contrast to salt, the net fluxes of TSS, POC and PN in the deeper parts of the water column were consistently landward at all four sites in Winyah Bay indicating the non-conservative behavior of particulate components and their active transport up the estuary in the region around the ETM.The carbon contents (%POC), carbon:nitrogen ratios (org[C:N]a) and stable carbon isotopic compositions (δ13CPOC) of the suspended particles varied significantly with depth, location and tidal stage. Tidally averaged compositions showed a significant increase up the estuary in the %POC and org[C:N]a values of suspended particles consistent with the preferential landward transport of carbon-rich particles with higher vascular plant debris content. The combination of tidal resuspension and flood-dominated flow appeared to be responsible for the hydrodynamic sorting of particles along the estuary that resulted in denser, organic-poor particles being transported landward less efficiently. The elemental and isotopic compositions indicated that vascular C3 plants and estuarine algae were the major sources of the particulate organic matter of all the samples, without any significant contributions from salt marsh C4 vegetation (Spartina alterniflora) and/or marine phytoplankton.  相似文献   
6.
We investigated the water structure and nutrient distribution in the Suruga Bay from April 2000 to July 2002, especially the Offshore Water, which occupies a large part of the bay. The maximum salinity in the upper 200 m varied between 34.49 and 34.71, indicating a temporal change in the influence of Kuroshio Water on the Offshore Water. Seasonal variation in nutrient concentrations was largest from surface to 50 m. On the other hand, the variance in nutrient concentrations within each season was largest in the subsurface layer of 100–300 m in spring, summer and fall. In the Offshore Water, the change of nutrients was negatively correlated with that of salinity in each season. This suggests that an increasing intrusion of saline water brings about a lower nutrient concentration in the Offshore Water. Likewise, negative correlations were observed between the change of the maximum salinity and chlorophyll a (Δ [chl.a-int])/nutrients integrated in the upper 200 m. Δ[chl.a-int] was significantly correlated with the changes of nitrate and phosphorus, but there were no significant correlations between Δ[chl.a-int] and the change of silicate. These results suggest that the concentrations of chlorophyll a and nutrients in the Offshore Water were decreased due to the increasing intrusion of Kuroshio Water. The Offshore Water is likely to be related to the regulation of primary production by nitrate.  相似文献   
7.
Decadal variability of subsurface temperature in the North Pacific has been investigated. Two dominant regions were found; the central subarctic region (CSa) and the north-eastern subtropical region (NESt). In CSa, cooling (warming) of wintertime subsurface temperature corresponds to the large (small) temperature gradient and southward (northward) shift of subsurface temperature front, associated with the increase (decrease) of positive wind stress curl and the southward (northward) shift of curl τ zero line with 2 years delay. It is suggested that the relocation of subtropical-subarctic boundary plays an important role. In NESt, importance of heat flux through the sea surface and heat divergence in the Ekman layer is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
西太平洋暖池变异及其对西太平洋次表层海温场的影响   总被引:9,自引:0,他引:9  
应用热带太平洋上层XBT温度资料,分析研究了西太平洋暖池区(0°~16°N,125°~145°E)上层海洋的变化特征以及与西太平洋次表层海温场之间的关系.研究表明,西太平洋暖池区的垂向温度存在显著的年际变化,尤其在次表层(120~200m)的变化最为明显.西太平洋暖池区的次表层冷暖信号明显早于西太平洋次表层的海温异常.分析发现,西太平洋暖池区的海温异常是导致整个西太平洋次表层海温场变异的关键区,当西太平洋暖池区的次表层冷暖信号加强时,3~4个月后西太平洋海温场出现大范围的冷暖异常.  相似文献   
9.
Porewater nutrient dynamics during emersion and immersion were investigated during different seasons in a eutrophic intertidal sandflat of Tokyo Bay, Japan, to elucidate the role of emersion and immersion in solute transport and microbial processes. The water content in the surface sediment did not change significantly following emersion, suggesting that advective solute transport caused by water table fluctuation was negligible. The rate of change in nitrate concentration in the top 10 mm of sediments ranged from −6.6 to 4.8 μmol N l−1 bulk sed. h−1 during the whole period of emersion. Steep nutrient concentration gradients in the surface sediment generated diffusive flux of nutrients directed downwards into deeper sediments, which greatly contributed to the observed rates of change in porewater nutrient concentration for several cases. Microbial nitrate reduction within the subsurface sediment appeared to be strongly supported by the downward diffusive flux of nitrate from the surface sediment. The stimulation of estimated nitrate production rate in the subsurface layer in proportion to the emersion time indicates that oxygenation due to emersion caused changes in the sediment redox environment and affected the nitrification and/or nitrate reduction rates. The nitrate and soluble reactive phosphorus pools in the top 10 mm of sediment decreased markedly during immersion (up to 68% for nitrate and up to 44% for soluble reactive phosphorus), however, this result could not be solely explained by molecular diffusion.  相似文献   
10.
Abstract

Based on hydrological data obtained during the 7th to 9th Chinese National Arctic Research Expeditions in the summers of 2016–2018, the main water structure on the shelf of the northern Bering Sea and the volume and heat fluxes of the Bering Strait throughflow were analyzed. Distinct variability was identified in the three Pacific water masses feeding the strait - Anadyr Water (AW), Bering Shelf Water (BSW) and Alaskan coastal water (ACW). Overall, the temperature and salinity of the entire section increased each year, with 2018 showing significant anomalies, i.e., a temperature anomaly of up to 1?°C and a maximum salinity anomaly of 2. From 2016 to 2018, the extent of the ACW gradually narrowed in the eastern part of this section, while the AW expanded eastward each year. The net volume transport through each of the three sections increased poleward from 1.65?Sv to 2.76?Sv, with the AW increasing from 0?Sv to 1.03?Sv, the BSW varying between 0.52–1.65?Sv, and the ACW gradually decreasing from 1.04?Sv to disappearing completely. The net heat fluxes were also poleward, varying between 25.77 TW and 61.50 TW, and showing a significant increase. Significant variations in magnitude and extent were observed in each water mass of the Bering Strait throughflow, which could produce widespread effects in the Arctic Ocean and the global ocean beyond.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号