首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   2篇
  1997年   1篇
  1996年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.
A semi-analytical method has been developed for calculating oil recovery in two and three dimensions, and for calculating effective relative permeabilities for coarse grids. The calculations are based on the assumption that the effects of a changing mobility field can be accounted for by using fixed streamtube geometries with flowrates updated to account for the changing mobility distribution. The single-phase pressure distribution from a numerical solution of Laplace's equation is used to calculate the pressure distribution for a two-phase flow based on a mapping of the solution of the Buckley-Leverett equation onto the streamtubes derived from the single-phase solution. The displacement calculations for oil recovery are based on theory previously developed by Dykstra and Parsons, extended to include the effects of spatially varying permeability and continuously changing mobilities, as occurs in solutions of the Buckley-Leverett equation for typical values of the mobility ratio. This idea has also been extended to the calculation of effective relative permeabilities for coarse-grid simulation and finally establishes the proper rules for averaging the results of fine-grid numerical simulations of two-phase flow for the definition of effective two-phase flow properties on coarse grids. These calculations have been generalized to three-dimensional flows by the simple device of conceptually inserting a gridded plane across the flow and defining each streamtube at that location as those streamlines which pass through any one of the grid cells. When combined with time-of-flight calculations from the gridded plane to both the producer and injector, the distribution of pore volume along each streamtube can be calculated. This information, combined with a tabulation of the single-phase, steady-state pressure distribution along each streamtube, provides all of the information needed for the semi-analytical calculation of oil recovery and effective flow properties in three-dimensional flows. © 1997 Elsevier Science Ltd. All rights reserved  相似文献   
3.
Challenges in reservoir forecasting   总被引:3,自引:0,他引:3  
The combination of geostatistics-based numerical geological models and finite difference flow simulation has improved our ability to predict reservoir performance. The main contribution of geostatistical modeling has been more realistic representations of reservoir heterogeneity. Our understanding of the physics of fluid flow in porous media is reasonably captured by flow simulators in common usage. Notwithstanding the increasing application and success of geostatistics and flow simulation there remain many important challenges in reservoir forecasting. This application has alerted geoscientists and physicists that geostatistical/flow models in many respects, are, engineering approximations to thereal spatial distribution andreal flow processes. This paper reviews current research directions and presents some new ideas of where reserach could be focused to improve our ability to model geological features, model flow processes, and, ultimately, improve reservoir performance predictions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号