首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
  国内免费   1篇
地球物理   23篇
地质学   1篇
海洋学   4篇
综合类   2篇
自然地理   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
The process of crater formation by the impact of water drops on soil, sand and various other target material was studied. Craters of various shapes and sizes were observed on different target materials or conditions, ranging from circumferential depression to completely hemispherical shape. Crater shape was dependent upon target material, its ?ow stress or shear strength and the presence and thickness of water on the surface. Between 5 and 22 per cent of impact energy was spent on cratering, but the relationship between crater volume and kinetic energy of a raindrop was curvilinear, indicating a lower ef?ciency of impact energy in removing target material as the energy increases. Impact impulse, on the other hand, showed a more linear relationship with crater volume, and the ratio of impulse over crater volume (I/V) remained constant for the entire range of drop sizes, impact velocities, and surface conditions used in this study. Surface shear strength, represented by the penetration depth of fall‐cone penetrometer, appeared to be a key factor involved in this process. An equation was developed which related crater volume to cone penetration depth and impact impulse. Crater volume, which appeared to be a better indicator of the total amount of material dislodged by a raindrop than splash amount, can thus be predicted using this equation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
3.
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion.  相似文献   
4.
Soil loss caused by erosion has enormous economic and social impacts. Splash effects of rainfall are an important driver of erosion processes; however, effects of vegetation on splash erosion are still not fully understood. Splash erosion processes under vegetation are investigated by means of throughfall kinetic energy (TKE). Previous studies on TKE utilized a heterogeneous set of plant and canopy parameters to assess vegetation's influence on erosion by rain splash but remained on individual plant- or plot-levels. In the present study we developed a method for the area-wide estimation of the influence of vegetation on TKE using remote sensing methods. In a literature review we identified key vegetation variables influencing splash erosion and developed a conceptual model to describe the interaction of vegetation and raindrops. Our model considers both amplifying and protecting effect of vegetation layers according to their height above the ground and aggregates them into a new indicator: the Vegetation Splash Factor (VSF). It is based on the proportional contribution of drips per layer, which can be calculated via the vegetation cover profile from airborne LiDAR datasets. In a case study, we calculated the VSF using a LiDAR dataset for La Campana National Park in central Chile. The studied catchment comprises a heterogeneous mosaic of vegetation layer combinations and types and is hence well suited to test the approach. We calculated a VSF map showing the relation between vegetation structure and its expected influence on TKE. Mean VSF was 1.42, indicating amplifying overall effect of vegetation on TKE that was present in 81% of the area. Values below 1 indicating a protective effect were calculated for 19% of the area. For future work, we recommend refining the weighting factor by calibration to local conditions using field-reference data and comparing the VSF with TKE field measurements. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
5.
Changes of soil surface roughness under water erosion process   总被引:5,自引:0,他引:5       下载免费PDF全文
The objective of this study was to determine the changing characteristics of soil surface roughness under different rainfall intensities and examine the interaction between soil surface roughness and different water erosion processes. Four artificial management practices (raking cropland, artificial hoeing, artificial digging, and contour tillage) were used according to the local agriculture customs of the Loess Plateau of China to simulate different types of soil surface roughness, using an additional smooth slope for comparison purposes. A total of 20 rainfall simulation experiments were conducted in five 1 m by 2 m boxes under two rainfall intensities (0.68 and 1.50 mm min?1) on a 15° slope. During splash erosion, soil surface roughness decreased in all treatments except raking cropland and smooth baseline under rainfall intensity of 0.68 mm min?1, while increasing for all treatments except smooth baseline under rainfall intensity of 1.50 mm min?1. During sheet erosion, soil surface roughness decreased for all treatments except hoeing cropland under rainfall intensity of 0.68 mm min?1. However, soil surface roughness increased for the artificial hoeing and raking cropland under rainfall intensity of 1.50 mm min?1. Soil surface roughness has a control effect on sheet erosion for different treatments under two rainfall intensities. For rill erosion, soil surface roughness increased for raking cropland and artificial hoeing treatments, and soil surface roughness decreased for artificial digging and the contour tillage treatments under two rainfall intensities. Under rainfall intensity of 0.68 mm min?1, the critical soil surface roughness was 0.706 cm for the resistance control of runoff and sediment yield. Under rainfall intensity of 1.50 mm min?1, the critical soil surface roughness was 1.633 cm for the resistance control of runoff, while the critical soil surface roughness was 0.706 cm for the resistance control of sediment yield. These findings have important implications for clarifying the erosive nature of soil surface roughness and harnessing sloped farmland. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
The persistence of soil compaction, caused by farmers' vehicles (tractors wheelings) during the dry season, can affect splash distribution and soil erosion so that surface flow starts at an earlier stage than between the wheelings. To investigate the effects of soil compaction on splash distribution, a dry clayey agricultural soil was compacted in steel cups with a hydraulic piston, and the shear strength was measured with a fall‐cone penetrometer. Two cups were compacted in the same manner, using one to measure the shear strength and the second for splash erosion measurements. A laboratory splash board of 1 m radius, divided into 13 concentric compartments, was used to collect the splashed particles. The water drop diameter used was 4·9 mm falling onto a soil splash cup of 50·2 cm2 area from 8 m height with a terminal velocity of 8·8 m s?1. The spatial distribution of the splashed particles, for different soil compactions, fitted the fundamental splash distribution function (FSDF) model better than the exponential function. The shapes of the curves of this function demonstrated the importance of the source area size; the smaller the cup diameter the better the spatial distribution is expressed by an exponential function. In addition, variability in soil surface conditions contributes to variation in splash characteristics. Detachment rates and average radial distance followed second degree relationships in terms of shear strength. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
A new approach is proposed to simulate splash erosion on local soil surfaces. Without the effect of wind and other raindrops, the impact of free‐falling raindrops was considered as an independent event from the stochastic viewpoint. The erosivity of a single raindrop depending on its kinetic energy was computed by an empirical relationship in which the kinetic energy was expressed as a power function of the equivalent diameter of the raindrop. An empirical linear function combining the kinetic energy and soil shear strength was used to estimate the impacted amount of soil particles by a single raindrop. Considering an ideal local soil surface with size of 1 m × 1 m, the expected number of received free‐falling raindrops with different diameters per unit time was described by the combination of the raindrop size distribution function and the terminal velocity of raindrops. The total splash amount was seen as the sum of the impact amount by all raindrops in the rainfall event. The total splash amount per unit time was subdivided into three different components, including net splash amount, single impact amount and re‐detachment amount. The re‐detachment amount was obtained by a spatial geometric probability derived using the Poisson function in which overlapped impacted areas were considered. The net splash amount was defined as the mass of soil particles collected outside the splash dish. It was estimated by another spatial geometric probability in which the average splashed distance related to the median grain size of soil and effects of other impacted soil particles and other free‐falling raindrops were considered. Splash experiments in artificial rainfall were carried out to validate the availability and accuracy of the model. Our simulated results suggested that the net splash amount and re‐detachment amount were small parts of the total splash amount. Their proportions were 0·15% and 2·6%, respectively. The comparison of simulated data with measured data showed that this model could be applied to simulate the soil‐splash process successfully and needed information of the rainfall intensity and original soil properties including initial bulk intensity, water content, median grain size and some empirical constants related to the soil surface shear strength, the raindrop size distribution function and the average splashed distance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
8.
Forest canopies present irregular surfaces that alter both the quantity and spatiotemporal variability of precipitation inputs. The drop size distribution (DSD) of rainfall varies with rainfall event characteristics and is altered substantially by the forest stand properties. Yet, the influence of two major European tree species, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst), on throughfall DSD is largely unknown. In order to assess the impact of these two species with differing canopy structures on throughfall DSD, two optical disdrometers, one above and one below the canopy of each European beech and Norway spruce, measured DSD of both incident rainfall and throughfall over 2 months at a 10‐s resolution. Fractions of different throughfall categories were analysed for single‐precipitation events of different intensities. While penetrating the canopies, clear shifts in drop size and temporal distributions of incoming rainfall were observed. Beech and spruce, however, had different DSD, behaved differently in their effect on diameter volume percentiles as well as width of drop spectrum. The maximum drop sizes under beech were higher than under spruce. The mean ± standard deviation of the median volume drops size (D50) over all rain events was 2.7 ± 0.28 mm for beech and 0.80 ± 0.04 mm for spruce, respectively. In general, there was a high‐DSD variability within events indicating varying amounts of the different throughfall fractions. These findings help to better understand the effects of different tree species on rainfall partitioning processes and small‐scale variations in subcanopy rainfall inputs, thereby demonstrating the need for further research in high‐resolution spatial and temporal properties of rainfall and throughfall.  相似文献   
9.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
10.
Soil loss continues to threaten Java's predominantly bench‐terraced volcanic uplands. Sediment transport processes on back‐sloping terraces with well‐aggregated clay‐rich oxisols in West Java were studied using two different techniques. Splash on bare, cropped, or mulched sub‐horizontal (2–3°) terrace beds was studied using splash cups of different sizes, whereas transport of sediment on the predominantly bare and steep (30–40/deg ) terrace risers was measured using a novel device combining a Gerlach‐type trough with a splash box to enable the separate measurement of transport by wash and splash processes. Measurements were made during two consecutive rainy seasons. The results were interpreted using a recently developed splash distribution theory and related to effective rainfall erosive energy. Splash transportability (i.e. transport per unit contour length and unit erosive energy) on the terrace risers was more than an order of magnitude greater than on bare terrace beds (0·39–0·57 versus 0·013–0·016 g m J?1). This was caused primarily by a greater average splash distance on the short, steep risers (>11 cm versus c. 1 cm on the beds). Splashed amounts were reduced by the gradual formation of a protective ‘pavement’ of coarser aggregates, in particular on the terrace beds. Soil aggregate size exhibited an inverse relationship with detachability (i.e. detachment per unit area and unit erosive energy) and average splash length, and therefore also with transportability, as did the degree of canopy and mulch cover. On the terrace risers, splash‐creep and gravitational processes transported an additional 6–50% of measured rain splash, whereas transport by wash played a marginal role. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号