首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1259篇
  免费   258篇
  国内免费   303篇
测绘学   59篇
大气科学   551篇
地球物理   328篇
地质学   519篇
海洋学   48篇
天文学   14篇
综合类   51篇
自然地理   250篇
  2024年   11篇
  2023年   25篇
  2022年   49篇
  2021年   73篇
  2020年   68篇
  2019年   58篇
  2018年   54篇
  2017年   85篇
  2016年   76篇
  2015年   75篇
  2014年   95篇
  2013年   129篇
  2012年   90篇
  2011年   81篇
  2010年   92篇
  2009年   89篇
  2008年   84篇
  2007年   83篇
  2006年   57篇
  2005年   49篇
  2004年   45篇
  2003年   41篇
  2002年   38篇
  2001年   41篇
  2000年   43篇
  1999年   33篇
  1998年   28篇
  1997年   19篇
  1996年   20篇
  1995年   22篇
  1994年   8篇
  1993年   6篇
  1992年   25篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   11篇
  1987年   1篇
排序方式: 共有1820条查询结果,搜索用时 31 毫秒
1.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   
2.
The magnitude and spatial distribution of snow on sea ice are both integral components of the ocean–sea‐ice–atmosphere system. Although there exists a number of algorithms to estimate the snow water equivalent (SWE) on terrestrial surfaces, to date there is no precise method to estimate SWE on sea ice. Physical snow properties and in situ microwave radiometry at 19, 37 and 85 GHz, V and H polarization were collected for a 10‐day period over 20 first‐year sea ice sites. We present and compare the in situ physical, electrical and microwave emission properties of snow over smooth Arctic first‐year sea ice for 19 of the 20 sites sampled. Physical processes creating the observed vertical patterns in the physical and electrical properties are discussed. An algorithm is then developed from the relationship between the SWE and the brightness temperature measured at 37 GHz (55°) H polarization and the air temperature. The multiple regression between these variables is able to account for over 90% of the variability in the measured SWE. This algorithm is validated with a small in situ data set collected during the 1999 field experiment. We then compare our data against the NASA snow thickness algorithm, designed as part of the NASA Earth Enterprise Program. The results indicated a lack of agreement between the NASA algorithm and the algorithm developed here. This lack of agreement is attributed to differences in scale between the Special Sensor Microwave/Imager and surface radiometers and to differences in the Antarctic versus Arctic snow physical and electrical properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
In 1903 the Swiss Federal Research Institute WSL started its first forest hydrology measurements with the aim to deliver a sound scientific basis for the implementation of new forest legislation introduced in Switzerland in 1876. This legislation was triggered by several large floods that occurred in Switzerland, for which a major cause was widely seen as the poor condition of forests at that time. Consequently, hydrologic research at WSL first focused on the influence of forests on floods. In the second half of the 20th century, other hydrological issues such as water quality, snow hydrology and sediment transport complemented the hydrologic research at WSL. Some recent results of this work are presented in three papers joining this introductory paper to mark the 100th anniversary of hydrologic research at WSL. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
4.
A one‐dimensional thermodynamic model for simulating lake‐ice phenology is presented and evaluated. The model can be driven with observed daily or hourly atmospheric forcing of air temperature, relative humidity, wind speed, cloud amount and snowfall. In addition to computing the energy balance components, key model output includes the temperature profile at an arbitrary number of levels within the ice/snow (or the water temperature if there is no ice) and ice thickness (clear ice and snow‐ice) on a daily basis, as well as freeze‐up and break‐up dates. The lake‐ice model is used to simulate ice‐growth processes on shallow lakes in arctic, sub‐arctic, and high‐boreal forest environments. Model output is compared with field and remote sensing observations gathered over several ice seasons. Simulated ice thickness, including snow‐ice formation, compares favourably with field measurements. Ice‐on and ice‐off dates are also well simulated when compared with field and satellite observations, with a mean absolute difference of 2 days. Model simulations and observations illustrate the key role that snow cover plays on the seasonal evolution of ice thickness and the timing of spring break‐up. It is also shown that lake morphometry, depth in particular, is a determinant of ice‐off dates for shallow lakes at high latitudes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
5.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
6.
For ecosystem modelling of the Boreal forest it is important to include processes associated with low soil temperature during spring‐early summer, as these affect the tree water uptake. The COUP model, a physically based SVAT model, was tested with 2 years of soil and snow physical measurements and sap flow measurements in a 70‐year‐old Scots pine stand in the boreal zone of northern Sweden. During the first year the extent and duration of soil frost was manipulated in the field. The model was successful in reproducing the timing of the soil warming after the snowmelt and frost thaw. A delayed soil warming, into the growing season, severely reduced the transpiration. We demonstrated the potential for considerable overestimation of transpiration by the model if the reduction of the trees' capacity to transpire due to low soil temperatures is not taken into account. We also demonstrated that the accumulated effect of aboveground conditions could be included when simulating the relationship between soil temperature and tree water uptake. This improved the estimated transpiration for the control plot and when soil warming was delayed into the growing season. The study illustrates the need of including antecedent conditions on root growth in the model in order to catch these effects on transpiration. The COUP model is a promising tool for predicting transpiration in high‐latitude stands. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
7.
本文着重描述了SGR钻孔处冰盖上的积雪在密实化过程中的特征变化,并对该过程进行了分段的和全面的回归分析.结果表明,冰盖密度随深度增大,但增长幅度随深度减小.作者提出密度变化减小度的概念.计算得出的所研究冰芯钻取点的密度变化减小度为-0.15kg/m~3·m~2,粒雪成冰前的密实速率平均值为4.08kg/m~3·a.本文得到的冰盖密度变化“临界点”与以往报道的有所不同.分析这一现象时,作者强调当积雪还在活动层时冰盖温度的影响,并以此解释密度剖面的异常变化以及离差的回升.特别指出,积雪的密度变化具有气候学意义,它在一定程度上能够反映出积雪形成及变化过程中气候变化的某些信息.本文由密度变化确定的钻孔点雪冰转化深度为50米.  相似文献   
8.
We have developed a technique for the accurate and precise determination of 34S/32S isotope ratios (δ34S) in sulfur-bearing minerals using solution and laser ablation multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We have examined and determined rigorous corrections for analytical difficulties such as instrumental mass bias, unresolved isobaric interferences, blanks, and laser ablation- and matrix-induced isotopic fractionation. Use of high resolution sector-field mass spectrometry removes major isobaric interferences from O2+. Standard-sample bracketing is used to correct for the instrumental mass bias of unknown samples. Background on sulfur masses arising from memory effects and residual oxygen-tailing are typically minor (< 0.2‰, within analytical error), and are mathematically removed by on-peak zero subtraction and by bracketing of samples with standards determined at the same signal intensity (within 20%). Matrix effects are significant (up to 0.7‰) for matrix compositions relevant to many natural sulfur-bearing minerals. For solution analysis, sulfur isotope compositions are best determined using purified (matrix-clean) sulfur standards and sample solutions using the chemical purification protocol we present. For in situ analysis, where the complex matrix cannot be removed prior to analysis, appropriately matrix-matching standards and samples removes matrix artifacts and yields sulfur isotope ratios consistent with conventional techniques using matrix-clean analytes. Our method enables solid samples to be calibrated against aqueous standards; a consideration that is important when certified, isotopically-homogeneous and appropriately matrix-matched solid standards do not exist. Further, bulk and in situ analyses can be performed interchangeably in a single analytical session because the instrumental setup is identical for both. We validated the robustness of our analytical method through multiple isotope analyses of a range of reference materials and have compared these with isotope ratios determined using independent techniques. Long-term reproducibility of S isotope compositions is typically 0.20‰ and 0.45‰ (2σ) for solution and laser analysis, respectively. Our method affords the opportunity to make accurate and relatively precise S isotope measurement for a wide range of sulfur-bearing materials, and is particularly appropriate for geologic samples with complex matrix and for which high-resolution in situ analysis is critical.  相似文献   
9.
Anders Schomacker   《Earth》2008,90(3-4):103-113
In the geological record, hummocky dead-ice moraines represent the final product of the melt-out of dead-ice. Processes and rates of dead-ice melting in ice-cored moraines and at debris-covered glaciers are commonly believed to be governed by climate and debris-cover properties. Here, backwasting rates from 14 dead-ice areas are assessed in relation to mean annual air temperature, mean summer air temperature, mean annual precipitation, mean summer precipitation, and annual sum of positive degree days. The highest correlation was found between backwasting rate and mean annual air temperature. However, the correlation between melt rates and climate parameters is low, stressing that processes and topography play a major role in governing the rates of backwasting. The rates of backwasting from modern glacial environments should serve as input to de-icing models for ancient dead-ice areas in order to assess the mode and duration of deposition.A challenge for future explorations of dead-ice environments is to obtain long-term records of field-based monitoring of melt progression. Furthermore, many modern satellite-borne sensors have high potentials for recordings of multi-temporal Digital Elevation Models (DEMs) for detection and quantification of changes in dead-ice environments. In recent years, high-accuracy DEMs from airborne laser scanning altimetry (LiDAR) are emerging as an additional data source. However, time series of high-resolution aerial photographs remain essential for both visual inspection and high-resolution stereographic DEM production.  相似文献   
10.
于1985年,一颗独特的凸缘微玻璃陨石被发现于采自北太平洋(9°33′N,167°00′W;水深4928m)深海沉积物中。使用各种分析方法对它的显微特征、微结构和化学成分进行了研究。结果表明,太平洋凸缘微玻璃陨石的形态和结构与达尔文的凸缘澳大利亚石(或玻璃陨石)和查普曼的人造凸缘玻璃陨石相似,从而揭示了玻璃陨石和微玻璃陨石的凸缘结构是由空气动力消融作用的产物。这一研究具有重要的理论和实际意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号