首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   2篇
地质学   1篇
  2014年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
从一个新的角度研究了序半群上的(∈,∈∨q)-模糊左理想、(∈,∈∨q)-模糊右理想和(∈,∈∨q)-模糊双理想,并利用这些理想给出了正则序半群的若干刻画定理。  相似文献   
2.
Two methods for the solution of partial differential equations (PDE) for the general case of random in time physical parameters are presented and their application to the solution of unsteady regional groundwater flow equations are illustrated. The first method is the semigroup approach which directly offers a solution without resorting to closure approximations (hierarchy techniques), perturbation techniques, or Montecarlo simulation techniques. The semigroup approach can also handle the general stochastic problem when randomness also appears as initial conditions, boundary conditions or forcing terms. The second method is an approximation scheme to obtain the semigroup solution in complex cases and permits the solution of equations with more than one random coefficient.  相似文献   
3.
This series of articles present general applications of functional-analytic theory to the solution of the partial differential equation describing solid transport in aquifers, when either the evolution of the system, the sources, the parameters and/or the boundary conditions are prescribed as stochastic processes in time or in space. This procedure does not require the restricting assumptions placed upon the current particular solutions on which today's stochastic transport theory is based, such as small randomness assumptions (perturbation techniques), Montecarlo simulations, restriction to small spatial stochasticity in the hydraulic conductivity, use of spectral analysis techniques, restriction to asymptotic steady state conditions, and restriction to variance of the concentration as the only model output among others. Functional analysis provides a rigorous tool in which the concentration stochastic properties can be predicted in a natural way based upon the known stochastic properties of the sources, the parameters and/or the boundary conditions. Thus the theory satisfies a more general modeling need by providing, if desired, a systematic global information on the sample functions, the mean, the variance, correlation functions or higher-order moments based on similar information of any size, anywhere, of the input functions. Part I of this series of articles presents the main relevant results of functional-analytic theory and individual cases of applications to the solution of distributed sources problems, with time as well as spatial stochasticity, and the solution subject to stochastic boundary conditions. It was found that the stochastically-forced equation may be a promising model for a variety of random source problems. When the differential equation is perturbed by a time and space stochastic process, the output is also a time and space stochastic process, in contrast with most of the existing solutions which ignore the temporal component. Stochastic boundary conditions seems to quickly dissipate as time increases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号