首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   80篇
  国内免费   21篇
测绘学   8篇
大气科学   13篇
地球物理   178篇
地质学   71篇
海洋学   17篇
综合类   14篇
自然地理   151篇
  2023年   4篇
  2022年   12篇
  2021年   22篇
  2020年   29篇
  2019年   23篇
  2018年   10篇
  2017年   21篇
  2016年   21篇
  2015年   14篇
  2014年   25篇
  2013年   27篇
  2012年   25篇
  2011年   15篇
  2010年   20篇
  2009年   22篇
  2008年   23篇
  2007年   13篇
  2006年   21篇
  2005年   12篇
  2004年   20篇
  2003年   12篇
  2002年   13篇
  2001年   9篇
  2000年   9篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有452条查询结果,搜索用时 187 毫秒
1.
选择辽西为中心,以近东西向延伸800km的辽蒙地质走廊为研究区,通过年代学研究,确认130Ma以来的中、新生代火山活动对称分布的时空格局,具有“中间老、两侧新”的特点,而且随着时间的推移,软流圈来源的岩浆向东西两侧侧向流动,岩浆来源不断加深。在此基础上提出“软流圈底辟体上涌和水平侧向流动”的模式。  相似文献   
2.
新疆和田河水资源利用与绿色走廊生态建设研究   总被引:2,自引:0,他引:2  
水是和田河绿色走廊形成与演变最重要的因素。虽然和田河径流量年际变化比较平稳.但年内径流量洪枯季节差异十分悬殊,人工调配水资源的难度较大。随着人类开发利用水资源规模扩大.水资源时空分布格局发生变化,中上游人工绿洲面积扩大,下游绿色走廊植被衰竭,土地荒漠化日趋严重,走廊生态环境持续恶化。文章分析了和田河水资源变化对下游绿色走廊兴衰的影响过程,提出了合理利用水资源、保护绿色走廊生态环境的对策建议。  相似文献   
3.
塔里木河下游输水与生态恢复监测初报   总被引:24,自引:12,他引:24  
根据近三年塔里木河下游生态输水前后地下水位、水质、土壤、植被等项内容的监测资料,分析了塔里木河下游输水对地下水位、水质的影响,揭示了输水与地表生态的响应过程,探讨了地下水位与天然植被生长、恢复的相互关系,阐述了植被退化过程及相关因子,确定了维系塔河下游生态安全的最低生态需水量、最佳生态水位。  相似文献   
4.
为了客观地反映各因素对目标问题的影响程度,本文首次提出了最佳因素权重概念。定义最佳因素权重为研究区域内系统质量处于极限状态时的各因素权重之组合。结合深港西部通道工程深圳湾公路大桥桥址比选方案,详细说明了本方法的研究思路及其确定方法。通过最佳因素权重方法,能客观地、定量地确定出多因素复杂系统中的最优场址。  相似文献   
5.
Macropores are subsurface connected void spaces caused by processes such as fracture of soils, micro‐erosion, and fauna burrows. They are common near streams (e.g. hyporheic and riparian zones) and may act as preferential flow paths between surface and groundwaters, affecting hydrologic and biogeochemical processes. We tested the hydrologic function of macropores by constructing an artificial macropore within the saturated zone of a meander bend (open macropore, ‘OM’) and later filling its upstream end (partially filled macropore, ‘PFM’). For each treatment, we injected saline tracer at an upgradient monitoring well within the meander and monitored downgradient hydraulics and tracer transport. Pressure transducers in monitoring wells indicated hydraulic gradients within the meander were 32% higher perpendicular to and 6% higher parallel to the macropore for the OM than for the PFM. Additionally, hydraulic conductivities measured via falling head tests were 29 to 550 times higher along the macropore than in nearby sediment. We used electrical conductivity probes in wells and electrical resistivity imaging to track solute transport. Transport velocities through the meander were on average 9 and 21% higher (per temporal moment analysis and observed tracer peak, respectively) for the OM than for the PFM. Furthermore, temporal moments of tracer breakthrough analysis indicated downgradient longitudinal dispersion and breakthrough tracer curve tailing were on average 234% and 182% higher for the OM, respectively. This suggests the OM enabled solute transport at overall shorter timescales than the matrix but also increased tailing. Our results demonstrate the importance of macropores to meander bend hydrology and solute transport. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
6.
Sugarcane is an annual crop with a dynamic canopy that changes over time mainly because of genetic adaptation. There is uncertainty about the temporal trends of throughfall (TF) in this important commercial crop. In the present paper, we used troughs to measure TF in a third and fourth ratoon and subsequently in a fourth and fifth ratoon. Additional measurements were carried out in an adjacent riparian forest. There were no significant differences between cycles of sugarcane, growth phases and riparian forest. The TF results for ratoon crop and riparian forest in 2011/2012 were 76% and 79.5% of gross rainfall, respectively, while in 2012/2013, they were 79% and 78%, respectively. However, TF was remarkably lower in the riparian forest relative to ratoon from the second half of the culm formation and elongation phase (280 days after harvest) until harvest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
7.
Dense understory thickets of the native evergreen shrub Rhododendron maximum expanded initially following elimination of American chestnut by the chestnut blight, and later in response to loss of the eastern hemlock due to hemlock woolly adelgid invasion. Rhododendron thickets often blanket streams and their riparian zones, creating cool, low-light microclimates. To determine the effect of such understory thickets on summer stream temperatures, we removed riparian rhododendron understory on 300 m reaches of two southern Appalachian Mountain headwater streams, while leaving two 300 m reference reaches undisturbed. Overhead canopy was left intact in all four streams, but all streams were selected to have a significant component of dead or dying eastern hemlock in the overstory, creating time-varying canopy gaps throughout the reach. We continuously monitored temperatures upstream, within and downstream of treatment and reference reaches. Temperatures were monitored in all four streams in the summer before treatments were imposed (2014), and for two summers following treatment (2015, 2016). Temperatures varied significantly across and within streams prior to treatment and across years for the reference streams. After rhododendron removal, increases in summer stream temperatures were observed at some locations within the treatment reaches, but these increases did not persist downstream and varied by watershed, sensor, and year. Significant increases in daily maxima in treatment reaches ranged from 0.9 to 2.6°C. Overhead canopy provided enough shade to prevent rhododendron removal from increasing summer temperatures to levels deleterious to native cold-water fauna (average summer temperatures remained below 16°C), and local temperature effects were not persistent.  相似文献   
8.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
9.
Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to compare estimates of ET specifically at 3 native vegetation restoration sites during 2014 planned flow events, and MODIS data were used to evaluate long‐term (2002–2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0–10 mm d?1 across sites, and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS‐derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.  相似文献   
10.
Water temperature (Tw) is a key determinant of freshwater ecosystem status and cause for concern under a changing climate. Hence, there is growing interest in the feasibility of moderating rising Tw through management of riparian shade. The Loughborough University Temperature Network (LUTEN) is an array of 36 water and air temperature (Ta) monitoring sites in the English Peak District set‐up to explore the predictability of local Tw, given Ta, river reach, and catchment properties. Year 1 of monitoring shows that 84%–94% of variance in daily Tw is explained by Ta. However, site‐specific logistic regression parameters exhibit marked variation and dependency on upstream riparian shade. Perennial spring flows in the lower River Dove also affect regression model parameters and strongly buffer daily and seasonal mean Tw. The asymptote of the models (i.e. maximum expected Tw) is particularly sensitive to groundwater inputs. We conclude that reaches with spring flows potentially offer important thermal refuges for aquatic organisms against expected long‐term warming of rivers and should be afforded special protection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号