首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1581篇
  免费   254篇
  国内免费   187篇
测绘学   50篇
大气科学   100篇
地球物理   438篇
地质学   592篇
海洋学   306篇
天文学   278篇
综合类   63篇
自然地理   195篇
  2024年   6篇
  2023年   11篇
  2022年   30篇
  2021年   35篇
  2020年   31篇
  2019年   54篇
  2018年   38篇
  2017年   49篇
  2016年   42篇
  2015年   36篇
  2014年   50篇
  2013年   65篇
  2012年   56篇
  2011年   76篇
  2010年   53篇
  2009年   89篇
  2008年   106篇
  2007年   128篇
  2006年   121篇
  2005年   97篇
  2004年   111篇
  2003年   87篇
  2002年   78篇
  2001年   67篇
  2000年   56篇
  1999年   67篇
  1998年   71篇
  1997年   50篇
  1996年   44篇
  1995年   30篇
  1994年   38篇
  1993年   14篇
  1992年   21篇
  1991年   16篇
  1990年   13篇
  1989年   16篇
  1988年   17篇
  1987年   6篇
  1986年   7篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   7篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1977年   1篇
  1954年   3篇
排序方式: 共有2022条查询结果,搜索用时 15 毫秒
1.
In the upper Chesapeake Bay (Maryland, U.S.A.) field surveys were conducted at 18 multiple longshore sand bar sites. The multiple bar systems were found in water depths less than approximately 2 m (mean sea level), and exhibited mild bottom slopes of 0·0052 or less. The number of bars composing each system ranged from four to 17 and the spacing between the crests typically increased in the offshore direction, ranging from 12 to 70 m. Bar height also typically increased with distance offshore and ranged from 0·03 to 0·61 m. A grain size analysis of crest and trough sediment did not reveal any significant differences and the sediment was categorized as ‘fine sand’. A review of the literature data indicated that the Chesapeake Bay multiple bars possessed similar characteristics to those found in Gelding Bay (Baltic Sea); similarities in fetch, wave height and tidal range between the two bays may account for this finding. The surf-scaling parameter indicated that the multiple bar systems were extremely dissipative with regard to wave energy, and wave height appeared to be an important factor in controlling bar spacing and bar height. A multiple wave break point hypothesis was discussed as a possible mechanism for the formation of Chesapeake Bay multiple longshore bars, and limited observational evidence appeared to support such a mechanism.  相似文献   
2.
We have observed the supernova remnant (SNR) G290.1−0.8 in the 21-cm H  i line and the 20-cm radio continuum using the Australia Telescope Compact Array (ATCA). The H  i data were combined with data from the Southern Galactic Plane Survey to recover the shortest spatial frequencies. In contrast, H  i absorption was analysed by filtering extended H  i emission, with spatial frequencies shorter than 1.1 kλ. The low-resolution ATCA radio continuum image of the remnant shows considerable internal structure, resembling a network of filaments across its 13-arcmin diameter. A high-resolution ATCA radio continuum image was also constructed to study the small-scale structure in the SNR. It shows that there are no structures smaller than ∼17 arcsec, except perhaps for a bright knot to the south, which is probably an unrelated object. The H  i absorption study shows that the gas distribution and kinematics in front of SNR G290.1−0.8 are complex. We estimate that the SNR probably lies in the Carina arm, at a distance 7 (±1) kpc. In addition, we have studied nearby sources in the observed field using archival multiwavelength data to determine their characteristics.  相似文献   
3.
4.
Summary. We present a new method to calculate the SH wavefield produced by a seismic source in a half-space with an irregular buried interface. The diffracting interface is represented by a distribution of body forces. The Green's functions needed to solve the boundary conditions are evaluated using the discrete wavenumber method. Our approach relies on the introduction of a periodicity in the source-medium configuration and on the discretization of the interface at regular spacing. The technique developed is applicable to boundaries of arbitrary shapes and is valid at all frequencies. Some examples of calculation in simple configurations are presented showing the capabilities of the method.  相似文献   
5.
6.
7.
8.
The eastern margin of the Variscan belt in Europe comprises plate boundaries between continental blocks and terranes formed during different tectonic events. The crustal structure of that complicated area was studied using the data of the international refraction experiments CELEBRATION 2000 and ALP 2002. The seismic data were acquired along SW–NE oriented refraction and wide-angle reflection profiles CEL10 and ALP04 starting in the Eastern Alps, passing through the Moravo-Silesian zone of the Bohemian Massif and the Fore-Sudetic Monocline, and terminating in the TESZ in Poland. The data were interpreted by seismic tomographic inversion and by 2-D trial-and-error forward modelling of the P waves. Velocity models determine different types of the crust–mantle transition, reflecting variable crustal thickness and delimiting contacts of tectonic units in depth. In the Alpine area, few km thick LVZ with the Vp of 5.1 km s− 1 dipping to the SW and outcropping at the surface represents the Molasse and Helvetic Flysch sediments overthrust by the Northern Calcareous Alps with higher velocities. In the Bohemian Massif, lower velocities in the range of 5.0–5.6 km s− 1 down to a depth of 5 km might represent the SE termination of the Elbe Fault Zone. The Fore-Sudetic Monocline and the TESZ are covered by sediments with the velocities in the range of 3.6–5.5 km s− 1 to the maximum depth of 15 km beneath the Mid-Polish Trough. The Moho in the Eastern Alps is dipping to the SW reaching the depth of 43–45 km. The lower crust at the eastern margin of the Bohemian Massif is characterized by elevated velocities and high Vp gradient, which seems to be a characteristic feature of the Moravo-Silesian. Slightly different properties in the Moravian and Silesian units might be attributed to varying distances of the profile from the Moldanubian Thrust front as well as a different type of contact of the Brunia with the Moldanubian and its northern root sector. The Moho beneath the Fore-Sudetic Monocline is the most pronounced and is interpreted as the first-order discontinuity at a depth of 30 km.  相似文献   
9.
Morphological analysis of the drainage system in the Eastern Alps   总被引:2,自引:1,他引:1  
We study the morphology of the major rivers draining the Eastern Alps to test whether the active tectonics of this part of the orogen is reflected in the shape of channel profiles of the river network. In our approach we compare channel profiles measured from digital elevation models with numerically modelled channel profiles using a stream power approach. It is shown that regions of high stream power coincide largely with regions of highest topography and largest uplift rates, while the forelands and the Pannonian Basin are characterised by a significantly lower stream power. From stream power modelling we conclude that there is young uplift at the very east of the Eastern Alps, in the Bohemian Massif and in the Pohorje Range. The impact of the Pleistocene glaciations is explored by comparing properties of rivers that drain in proximal and distal positions relative to the ice sheet during the last glacial maximum. Our analysis shows that most knick points, wind gaps and other non-equilibrium features of catchments covered by ice during the last glaciations (Salzach, Enns) can be correlated with glacial processes. In contrast the ice free catchments of the Mur and Drava are characterized by channels in morphological equilibrium at the first approximation and are showing only weak evidence of the strong tectonic activity within these catchments. Finally, the channel profiles of the Adige and the divide between the upper Rhine and Danube catchments differ significantly from the other catchments. We relate this to the fact that the Adige and the Rhine respond to different base levels from the remainder of the Eastern Alps: The Adige may preserve a record from the Messininan base level change and the Rhine is subject to the base level lowering in the Rhine Graben.  相似文献   
10.
The character of convergence along the Arabian–Iranian plate boundary changes radically eastward from the Zagros ranges to the Makran region. This appears to be due to collision of continental crust in the west, in contrast to subduction of oceanic crust in the east. The Makran subduction zone with a length of about 900 km display progressively older and highly deformed sedimentary units northward from the coast, together with an increase in elevation of the ranges. North of the Makran ranges are large subsiding basins, flanked to the north by active volcanoes. Based on 2D seismic reflection data obtained in this study, the main structural provinces and elements in the Gulf of Oman include: (i) the structural elements on the northeastern part of the Arabian Plate and, (ii) the Offshore Makran Accretionary Complex. Based on detailed analysis of these data on the northeastern part of the Arabian Plate five structural provinces and elements—the Musendam High, the Musendam Peneplain, the Musendam Slope, the Dibba Zone, and the Abyssal Plain have been identified. Further, the Offshore Makran Accretionary Complex shown is to consist Accretionary Prism and the For-Arc Basin, while the Accretionary Prism has been subdivided into the Accretionary Wedge and the Accreted/Colored Mélange. Lastly, it is important to note that the Makran subduction zone lacks the trench. The identification of these structural elements should help in better understanding the seismicity of the Makran region in general and the subduction zone in particular. The 1945 magnitude 8.1 tsunamigenic earthquake of the Makran and some other historical events are illustrative of the coastal region’s vulnerability to future tsunami in the area, and such data should be of value to the developing Indian Ocean Tsunami Warning System.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号