首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   15篇
  国内免费   32篇
测绘学   2篇
大气科学   59篇
地球物理   13篇
地质学   7篇
海洋学   3篇
自然地理   5篇
  2024年   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   3篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   2篇
  2007年   7篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有89条查询结果,搜索用时 31 毫秒
1.
Regional models of extreme rainfall must address the spatial variability induced by orographic obstacles. However, the proper detection of orographic effects often depends on the availability of a well‐designed rain gauge network. The aim of this study is to investigate a new method for identifying and characterizing the effects of orography on the spatial structure of extreme rainfall at the regional scale, including where rainfall data are lacking or fail to describe rainfall features thoroughly. We analyse the annual maxima of daily rainfall data in the Campania region, an orographically complex region in Southern Italy, and introduce a statistical procedure to identify spatial outliers in a low order statistic (namely the mean). The locations of these outliers are then compared with a pattern of orographic objects that has been a priori identified through the application of an automatic geomorphological procedure. The results show a direct and clear link between a particular set of orographic objects and a local increase in the spatial variability of extreme rainfall. This analysis allowed us to objectively identify areas where orography produces enhanced variability in extreme rainfall. It has direct implications for rain gauge network design criteria and has led to promising developments in the regional analysis of extreme rainfall. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
2.
Data obtained from a variety of sources including the Canadian Lightning Detection Network, weather radars, weather stations and operational numerical weather model analyses were used to address the evolution of precipitation during the June 2013 southern Alberta flood. The event was linked to a mid‐level closed low pressure system to the west of the region and a surface low pressure region initially to its south. This configuration brought warm, moist unstable air into the region that led to dramatic, organized convection with an abundance of lightning and some hail. Such conditions occurred in the southern parts of the region whereas the northern parts were devoid of lightning. Initially, precipitation rates were high (extreme 15‐min rainfall rates up to 102 mm h?1 were measured) but decreased to lower values as the precipitation shifted to long‐lived stratiform conditions. Both the convective and stratiform precipitation components were affected by the topography. Similar flooding events, such as June 2002, have occurred over this region although the 2002 event was colder and precipitation was not associated with substantial convection over southwest Alberta. Copyright © 2016 Her Majesty the Queen in Right of Canada. Hydrological Processes. © John Wiley & Sons, Ltd.  相似文献   
3.
Potential gradients were measured in the valley of the Simhachalam hills and near the top. They were found to be higher at the top than in the valley, where they increased in the forenoon. It was the reverse at the top of the hills. The valley winds were found to play an important role in the variation of potential gradient.  相似文献   
4.
吉林省突发性暴雨的时空分布特征   总被引:1,自引:0,他引:1  
王晓明 《气象》1996,22(4):27-31
使用吉林省54个气象站1960-1992年逐日、逐时降水资料,分析定义突发性暴雨过程,并从时空分布及地形影响等方面对各种突发性暴雨进行了分析,得出它们之间在时间分布和地理分布上的差异,为此类天气分析预报提供气候背景。  相似文献   
5.
The track,landfall,dynamic and thermodynamic and cloud-rain physical mesoscale structures and their evolution of typhoon HERB 1996 in 36 h from 0000 UTC 31 July to 1200 UTC 1 August 1996 were simulated by using the non-hydrostatic mesoscale model MM5.This period covered the process of typhoon HERB landfall at Taiwan and Fujian Provinces.Results show that the model successfully simulated the landfall process of typhoon HERB,revealed the most important characteristics of the mesoscale dynamic and thermodynamic and cloud-rain physical structure during its landfall.The simulated typhoon track was close to the observation.The center of cyclonic circulation simulated at 0000 UTC on 1 August 1996 (24 h integration) was located in shore near Fuqing,Fujian Province at which the typhoon was reported to landfall two hours later.It shows that strong upward motion formed by low level convergence existed in the eye-wall and subsidence at the eye.The wind field shows clear asymmetrical structure near the typhoon center.The cloud and rainband was screw-typed distributed around typhoon center,and consisted of meso-β scale rain cores.During the period of typhoon HERB staying near and passing over Taiwan,the lower cloud was developed in the eye region so that the previous clear typhoon eye on the satellite pictures became fuzzy.Observation shows that the typhoon center was "warm",but the model simulations with higher space resolution show that in the mid-troposphere the region of eye-wall with stronger upward motion and more cloud-and rain-water was warmer than the eye.During the period of typhoon passing over Taiwan and its following landfall at Fujian,the track of model typhoon deviated about 30 km northward (i.e.,rightward) because of the orographic effects of Taiwan Island,but the strength of the typhoon was not affected remarkably.The amount of rainfall on Taiwan in the 36 h simulations was enhanced more than six times by the orographic lifting of Taiwan Mountain.  相似文献   
6.
A linear,hemispheric and stationary spectral model with multilayers in the vertical was employed to simulate thevertical propagation of waves triggered by mountains.Results show that,in cooperation with the East Asia zonal meanflow,Tibetan Plateau can excite a strong wavenumber 1 perturbation in the stratosphere with its ridge and trough lo-cated over the Pacific and Atlantic Oceans respectively.On the other hand,the stratospheric wavenumber 1 perturbationcaused by the mechanical forcing of the Rocky Mountains in cooperation with the North America zonal mean flow isvery weak.Calculations from observational data of the vertical profile of critical wavenumber for vertically propagatingwaves imply that the tropospheric wavenumber 1 perturbation can hardly penetrate the North America tropopause up-wards,whereas it can freely propagate through the East Asia tropopause into the stratosphere.Two-dimensional E-Pcross-sections obtained from both observational data and simulated results also demonstrate that waves excited by theRocky Mountains are refracted towards low latitudes in the troposphere during their upward propagation:whereas,inaddition to the above mentioned equatorward leaning branch,the wavenumber 1 and 2 planetary waves excited by theTibetan Plateau possess another branch which is refracted to high latitudes during upward propagation and penetratesthe tropopause into the stratosphere.It is therefore concluded that the difference in the horizontal and vertical wavepropagations in the two hemispheres is a result of the different dynamical forcing induced by the two main mountains inthe Northern Hemisphere.  相似文献   
7.
The 0.5°×0.5°grid resolution distribution of lightning density in China and its circumjacent regions have been analyzed by using the satellite-borne OTD (Apr 1995-Mar 2000) and LIS (Dec 1997-Mar 2003) databases. It is shown that: (i) Firstly, the variability of the lightning density (LD) is particularly pronounced over the different subareas, 9 times greater over the south than the north side of Himalayas Mountains, 2.5 times greater over the eastern than the western area of China. While the maximum and minimum LD are respectively 31.4fl/km2/a (in Guangzhou region) and less than 0.2fl/km2/a (in the desert of western China). Secondly, the LD of China's continent regularly varies with latitude and distance off coast, which is consistent with annual mean precipitation in varying trend. In conclusion, the Qinghai-Tibet Plateau, the China's three-step staircase topography and the latitude are three important factors affecting macro-scale characteristics of the LD distribution, (ii) The regional differences  相似文献   
8.
海岸地形作用在青岛一次晚秋暴雨过程中的数值模拟分析   总被引:1,自引:1,他引:0  
利用常规资料和卫星、雷达观测,分析了2004年11月9日至10日山东青岛地区一次暴雨的中尺度结构特征,并在初步分析的基础上进行了数值模拟和地形的敏感性对比试验,结果表明:此次暴雨是冷锋前暖区的浅层对流性强降水;西太平洋的水汽是这次暴雨的主要水汽源;模式对这次强降水具有较强的模拟能力;海岸地形作用所产生的次级环流和中尺度重力波,可能是这次对流性强降水的触发机制,同时对这次降水有很大的增幅作用。  相似文献   
9.
If the initial fields are not in geostrophic balance, the adjustment and evolution will occur in the stratified fluid, and the frontogenesis will occur under suitable conditions. The evolution is studied here with a nonhydrostatic fully compressible meso-scale model (Advanced Regional Prediction System, ARPS). Four cases are designed and compared: (i) control experiment; (ii) with different initial temperature gradient; (iii) with vapor distribution; (iv) with orographic forcing. The results show that: (1) there is an inertial oscillation in the evolution of the imbalanced flow with the frequency of the local Coriolis f, and with its amplitude de-creasing with time. The stationary balanced state can only be approached as it cannot be reached in the limit duration of time, The energy conversion ratio varies in the range of [0, 1 / 3]; (2) the stronger initial tempera-ture gradient can make the final energy conversion ratio higher, and vice versa; (3) suitable vapor distribu-tion is favorable for the frontogenesis. It will bring forward the time of the frontogenesis, strengthen the in-tensity of the cold front, and influence the final energy conversion ratio; (4) the orographic forcing has an ev-idently strengthening effect on the frontogenesis. The strengthening effect on the frontogenesis and the influ-ence on the final energy conversion ratio depend on the relative location of the mountain to the cold front.  相似文献   
10.
Previous studies have recognized reflectivity maxima above the freezing level(RMAF) within stratiform precipitation over mountain slopes, however, quantitative studies are limited due to the lack of adequate identification criteria. Here, we establish an identification method for RMAF precipitation and apply it to the Tropical Rainfall Measuring Mission(TRMM) Precipitation Radar(PR) observations. Using the TRMM 2A25 product from 1998 to 2013, we show that the RMAF structure in reflectivity profiles can be effectively identified. RMAF exists not only in stratiform precipitation but also in convective precipitation. RMAF frequency is positively correlated with elevation, which is thought to be caused by enhanced updrafts in the middle layers of stratiform precipitation, or in the low to middle layers of convective precipitation over mountains. The average RMAF heights in stratiform and convective precipitation were 1.35 and 2.01 km above the freezing level, respectively, which is lower than previous results. In addition, our results indicate that the RMAF structure increased the echo top height and enhanced precipitation processes above the RMAF height, but it suppressed the downward propagation of ice particles and the near-surface rain rate. Future studies of orographic precipitation should take into account the impact of the RMAF structure and its relevant dynamic triggers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号