首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3948篇
  免费   1080篇
  国内免费   1208篇
测绘学   145篇
大气科学   763篇
地球物理   978篇
地质学   3040篇
海洋学   445篇
天文学   53篇
综合类   214篇
自然地理   598篇
  2024年   23篇
  2023年   84篇
  2022年   165篇
  2021年   186篇
  2020年   239篇
  2019年   238篇
  2018年   228篇
  2017年   218篇
  2016年   273篇
  2015年   227篇
  2014年   329篇
  2013年   357篇
  2012年   326篇
  2011年   318篇
  2010年   281篇
  2009年   264篇
  2008年   257篇
  2007年   278篇
  2006年   318篇
  2005年   214篇
  2004年   195篇
  2003年   159篇
  2002年   131篇
  2001年   108篇
  2000年   116篇
  1999年   113篇
  1998年   103篇
  1997年   84篇
  1996年   86篇
  1995年   54篇
  1994年   61篇
  1993年   48篇
  1992年   46篇
  1991年   29篇
  1990年   22篇
  1989年   14篇
  1988年   13篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1954年   2篇
排序方式: 共有6236条查询结果,搜索用时 15 毫秒
1.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
2.
The impact of turbulent flow on plane strain fluid‐driven crack propagation is an important but still poorly understood consideration in hydraulic fracture modeling. The changes that hydraulic fracturing has experienced over the past decade, especially in the area of fracturing fluids, have played a major role in the transition of the typical fluid regime from laminar to turbulent flow. Motivated by the increasing preponderance of high‐rate, water‐driven hydraulic fractures with high Reynolds number, we present a semianalytical solution for the propagation of a plane strain hydraulic fracture driven by a turbulent fluid in an impermeable formation. The formulation uses a power law relationship between the Darcy‐Weisbach friction factor and the scale of the fracture roughness, where one specific manifestation of this generalized friction factor is the classical Gauckler‐Manning‐Strickler approximation for turbulent flow in a rough‐walled channel. Conservation of mass, elasticity, and crack propagation are also solved simultaneously. We obtain a semianalytical solution using an orthogonal polynomial series. An approximate closed‐form solution is enabled by a choice of orthogonal polynomials embedding the near‐tip asymptotic behavior and thus giving very rapid convergence; a precise solution is obtained with 2 terms of the series. By comparison with numerical simulations, we show that the transition region between the laminar and turbulent regimes can be relatively small so that full solutions can often be well approximated by either a fully laminar or fully turbulent solution.  相似文献   
3.
This study evaluated the spatial variability of streambed vertical hydraulic conductivity (Kv) in different stream morphologies in the Frenchman Creek Watershed, Western Nebraska, using different variogram models. Streambed Kv values were determined in situ using permeameter tests at 10 sites in Frenchman, Stinking Water and Spring Creeks during the dry season at baseflow conditions. Measurements were taken both in straight and meandering stream channels during a 5 day period at similar flow conditions. Each test site comprised of at least three transects and each transect comprised of at least three Kv measurements. Linear, Gaussian, exponential and spherical variogram models were used with Kriging gridding method for the 10 sites. As a goodness-of-fit statistic for the variogram models, cross-validation results showed differences in the median absolute deviation and the standard deviation of the cross-validation residuals. Results show that using the geometric means of the 10 sites for gridding performs better than using either all the Kv values from the 93 permeameter tests or 10 Kv values from the middle transects and centre permeameters. Incorporating both the spatial variability and the uncertainty involved in the measurement at a reach segment can yield more accurate grid results that can be useful in calibrating Kv at watershed or sub-watershed scales in distributed hydrological models.  相似文献   
4.
5.
The Tamtsag Basin is located in the extreme eastern portion of the Mongolia. The Basin and its counterpart in China (the Hailar Basin) are united a whole basin on the structural setting. In recent years, the Tamtsag Basin attracts more and more attention with the important exploration discovered in the 19th block by SOCO and in Hailar Basin of China. This paper discusses the exploration potential of Tamtsag Basin from the viewpoint of petroleum geology.  相似文献   
6.
For the complete system of biharmonic functions a suitable representation in spheroidal coordinates is found. It is used for expanding the distance between two arbitrary gravitating points and its inverse quantity in appropriate series. Such expansions can be of interest and useful in a number of problems of celestial mechanics and stellar dynamics.  相似文献   
7.
CORROSION AND ADHERENCE AT SEA OIL-PLATFORM   总被引:1,自引:0,他引:1  
Measurements of the adhesive corrosion and protective potentials of 3 Bohai Sea oilplatforms under different cathodic protection showed corrosion still occurred on these platforms undertheir designed protective potentials. Preliminary conclusions from indoor experiments on the relation betweenadhesive corrosion and cathodic protection showed adhering organisms caused the corrosion onthese platforms.  相似文献   
8.
Borehole data reveals that during Late Quaternary, the Ganga river was non-existent in its present location near Varanasi. Instead, it was flowing further south towards peripheral craton. Himalayan derived grey micaceous sands were being carried by southward flowing rivers beyond the present day water divide of Ganga and mixed with pink arkosic sand brought by northward flowing peninsular rivers. Subsequently, the Ganga shifted to its present position and got incised. Near Varanasi, the Ganga river is flowing along a NW-SE tectonic lineament. The migration of Ganga river is believed to have been in response to basin expansion caused due to Himalayan tectonics during Middle Pleistocene times. Multi-storied sand bodies generated as a result of channel migration provide excellent aquifers confined by a thick zone of muddy sediments near the surface. Good quality potable water is available at various levels below about 70 m depth in sandy aquifers. Craton derived gravelly coarse-to-medium grained sand forms the main aquifer zones of tens of meter thickness with enormous yield. In contrast, the shallow aquifers made up of recycled interfluve silt and sandy silt occur under unconfined conditions and show water-level fluctuation of a few meters during pre-and post-monsoon periods.  相似文献   
9.
Remote Sensing and Geographic Information System has become one of the leading tools in the field of hydrogeological science, which helps in assessing, monitoring and conserving groundwater resources. It allows manipulation and analysis of individual layer of spatial data. It is used for analysing and modelling the interrelationship between the layers. This paper mainly deals with the integrated approach of Remote Sensing and geographical information system (GIS) to delineate groundwater potential zones in hard rock terrain. The remotely sensed data at the scale of 1:50,000 and topographical information from available maps, have been used for the preparation of ground water prospective map by integrating geology, geomorphology, slope, drainage-density and lineaments map of the study area. Further, the data on yield of aquifer, as observed from existing bore wells in the area, has been used to validate the groundwater potential map. The final result depicts the favourable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.  相似文献   
10.
The petrological parameters Na8 and Fe8, which are Na2O andFeO contents in mid-ocean ridge basalt (MORB) melts correctedfor fractionation effects to MgO = 8 wt%, have been widely usedas indicators of the extent and pressure of mantle melting beneathocean ridges. We find that these parameters are unreliable.Fe8 is used to compute the mantle solidus depth (Po) and temperature(To), and it is the values and range of Fe8 that have led tothe notion that mantle potential temperature variation of TP= 250 K is required to explain the global ocean ridge systematics.This interpreted TP = 250 K range applies to ocean ridges awayfrom ‘hotspots’. We find no convincing evidencethat calculated values for Po, To, and TP using Fe8 have anysignificance. We correct for fractionation effect to Mg# = 0·72,which reveals mostly signals of mantle processes because meltswith Mg# = 0·72 are in equilibrium with mantle olivineof Fo89·6 (vs evolved olivine of Fo88·1–79·6in equilibrium with melts of Fe8). To reveal first-order MORBchemical systematics as a function of ridge axial depth, weaverage out possible effects of spreading rate variation, local-scalemantle source heterogeneity, melting region geometry variation,and dynamic topography on regional and segment scales by usingactual sample depths, regardless of geographical location, withineach of 22 ridge depth intervals of 250 m on a global scale.These depth-interval averages give Fe72 = 7·5–8·5,which would give TP = 41 K (vs 250 K based on Fe8) beneathglobal ocean ridges. The lack of Fe72–Si72 and Si72–ridgedepth correlations provides no evidence that MORB melts preservepressure signatures as a function of ridge axial depth. We thusfind no convincing evidence for TP > 50 K beneath globalocean ridges. The averages have also revealed significantcorrelations of MORB chemistry (e.g. Ti72, Al72, Fe72,Mg72, Ca72, Na72 and Ca72/Al72) with ridge axial depth. Thechemistry–depth correlation points to an intrinsic linkbetween the two. That is, the 5 km global ridge axial reliefand MORB chemistry both result from a common cause: subsolidusmantle compositional variation (vs TP), which determines themineralogy, lithology and density variations that (1) isostaticallycompensate the 5 km ocean ridge relief and (2) determine thefirst-order MORB compositional variation on a global scale.A progressively more enriched (or less depleted) fertileperidotite source (i.e. high Al2O3 and Na2O, and low CaO/Al2O3)beneath deep ridges ensures a greater amount of modal garnet(high Al2O3) and higher jadeite/diopside ratios in clinopyroxene(high Na2O and Al2O3, and lower CaO), making a denser mantle,and thus deeper ridges. The dense fertile mantle beneath deepridges retards the rate and restricts the amplitude of the upwelling,reduces the rate and extent of decompression melting, givesway to conductive cooling to a deep level, forces melting tostop at such a deep level, leads to a short melting column,and thus produces less melt and probably a thin magmatic crustrelative to the less dense (more refractory) fertile mantlebeneath shallow ridges. Compositions of primitive MORB meltsresult from the combination of two different, but geneticallyrelated processes: (1) mantle source inheritance and (2) meltingprocess enhancement. The subsolidus mantle compositional variationneeded to explain MORB chemistry and ridge axial depth variationrequires a deep isostatic compensation depth, probably in thetransition zone. Therefore, although ocean ridges are of shalloworigin, their working is largely controlled by deep processesas well as the effect of plate spreading rate variation at shallowlevels. KEY WORDS: mid-ocean ridges; mantle melting; magma differentiation; petrogenesis; MORB chemistry variation; ridge depth variation; global correlations; mantle compositional variation; mantle source density variation; mantle potential temperature variation; isostatic compensation  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号