首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   5篇
地质学   1篇
综合类   1篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  1990年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Two ungrouted post‐tensioned, precast concrete‐filled tube (CFT) segmental bridge columns were tested under lateral cyclic loading to evaluate the seismic performance of the column details. The specimens included a load stub, four equal‐height circular CFT segments, and a footing. Strands were placed through the column and post‐tensioned to provide a precompression of the column against the footing. One specimen also contained energy‐dissipating devices at the base to increase the hysteretic energy. The test results showed that (1) both specimens could develop the maximum flexural strength at the design drift and achieve 6% drift with small strength degradation and residual displacement, (2) the proposed energy‐dissipating device could increase energy dissipation in the hysteresis loops, and (3) the CFT segmental columns rotated not only about the base but also about the interface above the bottom segment. This study proposed and verified a method to estimate the experimental flexural displacement using two plastic hinges in the segmental column. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
2.
The cyclic behaviour of plastic hinges is an essential component in tracking the behaviour of RC frames to failure, not only for monotonically increasing force/pressure loads such as under extreme wind loads but also for dynamic displacement-driven loads such as under earthquake ground motions. To describe member deformations at ultimate loading, traditional moment–curvature techniques have required the use of an empirical hinge length to predict rotations, and despite much research a definitive generic expression for this empirical hinge length is yet to be defined. To overcome this problem, a discrete rotation approach, which directly quantifies the rotation between crack faces using mechanics, has been developed for beams and been shown to be accurate under monotonic loading. In this paper, the discrete rotation approach for monotonic loads is extended to cope with cyclic loads for dynamic analyses, and this has led to the development of a new partial interaction numerical simulation capable of allowing for reversals of slip of the reinforcing bars. This numerical tool should be very useful for the nonlinear analysis of reinforced concrete beams and reinforced concrete columns with small axial loads under severe dynamic loads. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
New steel moment‐resisting connections that incorporate post‐tensioning elements to provide a self‐centering capacity and devices to dissipate seismic input energy have recently been proposed and experimentally validated. Experimental studies have confirmed that these connections are capable of undergoing large lateral deformations with negligible residual drifts. To facilitate their implementation, accurate modeling of the behavior of systems incorporating post‐tensioned connections must be readily available to designers and researchers. A number of simplified models have been suggested in the literature by researchers trying to capture experimental results at the beam–column connections and thereby to predict the global response of structures incorporating such connections. To provide a clear set of guidelines for the modeling of post‐tensioned steel frames, for practicing engineers as well as researchers, in this paper three types of numerical models of increasing complexity are presented: (i) a sectional analysis procedure, (ii) a lumped plasticity spring frame leveled approach and (iii) a non‐linear solid finite element analysis to predict the response at ultimate deformation levels. The analytical results obtained from the numerical models predict well the structural behavior of these connections when compared with available experimental data. Even at the ultimate deformation level, analytical results are in good agreement with test results. Furthermore, detailing requirements are proposed to assure that flexural hinges form in the beams in order to improve the cyclic response of steel self‐centering connections when drifts exceeding the design drifts are imposed to the system. Experimental and analytical studies demonstrate that steel post‐tensioned self‐centering connections incorporating the proposed detailing in the beams develop an increased deformation capacity and thereby exhibit a ductile response while avoiding a sudden loss of their strength and stiffness. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
4.
The northern fold belt away from the Singhbhum Shear Zone displays a set of folds on bedding. The folds are sub-horizontal with E-W to ESE striking steep axial surfaces. In contrast, the folds in the Singhbhum Shear Zone developed on a mylonitic foliation and have a reclined geometry with northerly trending axes. There is a transitional zone between the two, where the bedding and the cleavage have become parallel by isoclinal folding and two sets of reclined folds have developed by deforming the bedding—parallel cleavage. Southward from the northern fold belt the intensity of deformation increases, the folds become tightened and overturned towards the south while the fold hinges are rotated from the sub-horizontal position to a down-dip attitude. Recognition of the transitional zone and the identification of the overlapping character of deformation in the shear zone and the northern belt enable the formulation of a bulk kinematic model for the area as a whole.  相似文献   
5.
基于扭矩测量的二维簧片重力梯度仪的设计   总被引:1,自引:0,他引:1  
基于扭矩测量原理,设计了一个精度为1E的二维簧片重力梯度仪。它的敏感部分是一个簧片悬挂的二维Z形扭摆,用一个高灵敏度的二维电容微位移传感器来检测此摆的二维扭转情况,进而获得摆周围的重力梯度信息。该二维簧片重力梯度仪具有性能稳定、精度高等优点。  相似文献   
6.
This paper explores the notion of detailing reinforced concrete structural walls to develop base and mid‐height plastic hinges to better control the seismic response of tall cantilever wall buildings to strong shaking. This concept, termed here dual‐plastic hinge (DPH) concept, is used to reduce the effects of higher modes of response in high‐rise buildings. Higher modes can significantly increase the flexural demands in tall cantilever wall buildings. Lumped‐mass Euler–Bernoulli cantilevers are used to model the case‐study buildings examined in this paper. Buildings with 10, 20 and 40 stories are designed according to three different approaches: ACI‐318, Eurocode 8 and the proposed DPH concept. The buildings are designed and subjected to three‐specific historical strong near‐fault ground motions. The investigation clearly shows the dual‐hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the walls. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
7.
通过改变基本单元的数量m,本文提出的改进框架支撑模型不仅适用于不同层高宽比和材料的剪力墙结构,而且适用于框支、开洞等不同形式的剪力墙结构。通过对框支配筋砌块砌体剪力墙KZW-2子结构拟动力试验的模拟结果表明,改进框架支撑模型能有效地模拟剪力墙结构在地震作用下的弹塑性变形性能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号