首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   3篇
  2012年   1篇
  2003年   1篇
  1998年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Landslide dams are a common phenomenon. They form when a landslide reaches the bottom of a river valley causing a blockage. The first effect of such a dam is the infilling of a lake that inundates the areas upstream, while the possibility of a sudden dam collapse, with a rapid release of the impounded waters, poses a higher flood risk to the downstream areas. The results of the main inventories carried out to date on landslide dams, have been examined to determine criteria for forecasting landslide dam evolution with particular emphasis on the assessment of dam stability. Not all landslides result in the blockage of a river channel. This only occurs with ones that can move a large amount of material with moderate or high‐velocities. In most cases, these landslides are triggered by rainfall events or high magnitude earthquakes. A relationship also exists between the volume of the displaced material and the landslide dam stability. Several authors have proposed that landslide dam behaviour can be forecast by defining various geomorphological indexes, that result from the combination of variables identifying both the dam and the dammed river channel. Further developments of this geomorphological approach are presented in this paper by the definition of a dimensionless blockage index. Starting with an analysis of 84 episodes selected worldwide, it proved to be a useful tool for making accurate predictions concerning the fate of a landslide dam. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
Fluvial sediment transport in the high mountain Partnach River (Reintal Valley, Bavarian Alps) was investigated during a 10‐year observation period (2001–2010). During this period, the downstream reach of the Partnach River was decoupled from upstream sediment throughput by a rockslide deposit until 2005. In August 2005, the dam was partially breached during a flood event resulting in renewed sediment coupling between the upstream and downstream reaches. A comparison of pre‐ and post‐dambreak river sediment load data showed that the dissolved load dominated sediment transport prior to August 2005 with a switch to the dominance of bedload transport, post‐dambreak. The higher post‐dambreak bedload rates were particularly evident during the first years after the dam failure due to significant coarse material coupling between active sediment sources (undercut banks/talus cones) and the Partnach River. In the last years of the observation period (2009 and 2010) the dominance of dissolved load transport was re‐established. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
Studies of the bedload transport regime of the Roaring River, Colorado, in 1984–88, following a dambreak flood in 1982, showed that bedload transport rates were an order of magnitude higher than under pre-flood conditions. A gorge eroded by the flood in glacial moraine acted as a major sediment supply source. Measurements in early June 1995 showed a continued potential for high sediment supply from the gorge and a bedload transport regime similar to that of 1984–88. A major snowmelt flood in mid-June flushed sediment supplies from the gorge and measurements in July showed a corresponding reduction in bedload transport. However, high sediment supply will continue until the gorge cliffs revegetate or erode to a stable slope. The measurements demonstrate both the control exercised by sediment supply on transport rates and the persistent long-term impact of major floods on mountain streams. © 1998 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号