首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   3篇
  2019年   1篇
  2009年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 78 毫秒
1
1.
Summer stream water quality was monitored before and following the logging of 50% of the boreal forest within three small watersheds (<50 ha) nested in the ‘Ruisseau des Eaux‐Volées’ Experimental Watershed, Montmorency Forest (Québec, Canada). Logging was conducted in winter, on snow cover according to recommended best management practices (BMPs) to minimize soil disturbance and protect advance growth. A 20‐m forest buffer was maintained along perennial streams. In watershed 7·2, cut‐blocks were located near the stream network and logging was partially allowed within the riparian buffer zone. In watersheds 7·5 and 7·7, logging occurred farther away from the stream network. Observations were also made for watershed 7·3 that collected the runoff from watersheds 7·2 and 7·5, and watershed 7·6, the uproad portion of watershed 7·7. The control watershed 0·2 was contiguous to the impacted watersheds and remained undisturbed. Following clearcutting, changes in summer daily maximum and minimum stream temperatures remained within ± 1 °C while changes in diurnal variation did not decrease by more than 0·5 °C. Concentrations of NO3? greatly increased by up to 6000% and concentrations of K+ increased by up to 300% during the second summer after logging. Smaller increases were observed for Fetotal (up to 71%), specific conductance (up to 26%), and Mg2+ (up to 19%). Post‐logging pH decreased slightly by no more than 7% while PO43? concentration remained relatively constant. Suspended sediment concentrations appeared to increase during post‐logging, but there was not enough pre‐logging data to statistically confirm this result. Logging of moderate intensity and respecting established BMPs may account for the limited changes of water quality parameters and the low exceedances of the criteria for the protection of aquatic life. The proximity of the cutover to the stream network and logging within the riparian zone did not appear to affect water quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
2.
Long‐term effects of different forest management practices on landslide initiation and volume were analysed using a physically based slope stability model. The watershed‐based model calculates the effects of multiple harvesting entries on slope stability by accounting for the cumulative impacts of a prior vegetation removal on a more recent removal related to vegetation root strength and tree surcharge. Four sequential clearcuts and partial cuts with variable rotation lengths were simulated with or without leave areas and with or without understorey vegetation in a subwatershed of Carnation Creek, Vancouver Island, British Columbia. The combined in?nite slope and distributed hydrologic models used to calculate safety factor revealed that most of the simulated landslides were clustered within a 5 to 17 year period after initial harvesting in cases where suf?cient time (c. 50 years) lapsed prior to the next harvesting cycle. Partial cutting produced fewer landslides and reduced landslide volume by 1·4‐ to 1·6‐fold compared to clearcutting. Approximately the same total landslide volume was produced when 100 per cent of the site was initially clearcut compared to harvesting 20 per cent of the area in successive 10 year intervals; a similar ?nding was obtained for partial cutting. Vegetation leave areas were effective in reducing landsliding by 2‐ to 3‐fold. Retaining vigorous understorey vegetation also reduced landslide volume by 3·8‐ to 4·8‐fold. The combined management strategies of partial cutting, increasing rotation length, provision of leave areas, and retention of viable understorey vegetation offer the best alternative for minimizing landslide occurrence in managed forests. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
Forest harvesting often increases catchment quickflow (QF, water delivered rapidly to the stream channel), a metric of high‐flow events controlling a catchment's solute and sediment export. Nevertheless, our understanding of QF responses to various silvicultural strategies (e.g., clearcutting, selection harvest, and shelterwood harvest) is incomplete. We present a 31‐year examination of QF delivery from treatment (clearcut, selection harvest, and shelterwood harvest) and control catchments in a deciduous forest landscape in central Ontario, Canada. Growing season root‐zone storage capacity was estimated using a water balance approach to evaluate temporal changes in QF response to precipitation (P) for pretreatment and posttreatment periods. Threshold relationships between QF and P were assessed for control and treatment catchments for pretreatment and posttreatment periods using piecewise regression. Root‐zone storage capacity demarcated shifts in the hydrologic regime arising from forest harvesting and subsequent regeneration. This was particularly pronounced for clearcutting where postharvest decline in root‐zone storage capacity was followed by a rise to preharvest values. Similar pretreatment threshold relationships between QF and P, and near‐identical P thresholds for producing significant QF, reflected similar soil and overburden depths in the catchments. Harvesting effects were indicated by increases in QF/P ratios for relative small P and the number of P events that generated QF, thus changing treatment QF vs. P threshold relationships. Prior to harvesting there was no significant increase in QF with P below a threshold P of 35–45 mm; however, there was a significant QF vs. P relationship below this threshold for all treatments postharvest. Clearcutting increased the number of QF events for the entire postharvest period and the first 9‐year postharvest compared to the other treatments; nevertheless, evidence for intertreatment differences in total QF depth delivered from the catchments during the growing season was inconclusive. Our work suggests that changes in threshold relationships between QF and P, coupled with knowledge of the physical processes underlying them, are useful when evaluating hydrologic responses to forest harvesting.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号