首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
  国内免费   2篇
地球物理   10篇
地质学   5篇
海洋学   1篇
自然地理   2篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
郑光  许强  彭双麒 《岩土力学》2019,40(12):4897-4906
滑坡?碎屑流的远程运动距离是碎屑流体所能够达到的最大堆积距离,是灾害预警和评估的重要指标。通过总结已有碎屑流运动距离研究成果,从岩体势能入手开展研究,并结合量纲分析,首先建立了运动距离与势能之间的基本方程。其后,采用4种颗粒材料开展岩质碎屑流滑槽试验,研究碎屑体体积V、滑移区坡度?、碎屑粒径d以及最大垂直运动距离H等对碎屑流运动距离L的影响,通过逐步拟合回归,建立了基于势能的岩质滑坡?碎屑流最大水平运动距离的计算公式。最后,采用汶川地震触发的38个岩质碎屑流以及17个其他典型岩质滑坡碎屑流数据对计算公式进行了验证,结果表明,考虑该运动距离计算公式具有较好的可靠性,能够为山区滑坡?碎屑流灾害预警工作提供理论指导。  相似文献   
2.
Meandering river sinuosity increases until the channel erodes into itself (neck cutoff) or forms a new channel over the floodplain (chute cutoff) and sinuosity is reduced. Unlike neck cutoff, which can be measured or modelled without considering overbank processes, chute cutoff must be at least partially controlled by channel-forming processes on the floodplain. Even though chute cutoff controls meandering river form, the processes that cause chute cutoff are not well understood. This study analyses the morphology of two incipient chute cutoffs along the East Fork White River, Indiana, USA, using high temporal and spatial resolution UAS-based LiDAR and aerial photography. LiDAR and aerial imagery obtained between 1998 and 2019 reveals that large scour holes formed in the centre of both chutes sometime after chute channel initiation. A larger analysis within the study watershed reveals that scour holes within incipient chutes can be stable or unstable, and tend to stabilize when the chute is colonized by native vegetation and forest. When the scour holes form in farmed floodplain, they enlarge rapidly after initial formation and contribute to complete chute cutoff. In addition, this study shows that the formation of scour holes can occur in response to common, relatively low-magnitude floods and that the amount of incipient chute erosion does not depend on peak flood magnitude. The role of scour holes in enlarging chute channels could be an important mechanism for chute channel evolution in meandering rivers. This study also confirms that understanding the relationships among flow, land cover, and cutoff morphology is substantially improved with on-demand remote sensing techniques like integrated UAS and LiDAR. © 2020 John Wiley & Sons, Ltd.  相似文献   
3.
Our objective is to understand general causes of different river channel patterns. In this paper we compare an empirical stream power‐based classification and a physics‐based bar pattern predictor. We present a careful selection of data from the literature that contains rivers with discharge and median bed particle size ranging over several orders of magnitude with various channel patterns and bar types, but no obvious eroding or aggrading tendency. Empirically a continuum is found for increasing specific stream power, here calculated with pattern‐independent variables: mean annual flood, valley gradient and channel width predicted with a hydraulic geometry relation. ‘Thresholds’, above which certain patterns emerge, were identified as a function of bed sediment size. Bar theory predicts nature and presence of bars and bar mode, here converted to active braiding index (Bi). The most important variables are actual width–depth ratio and nonlinearity of bed sediment transport. Results agree reasonably well with data. Empirical predictions are somewhat better than bar theory predictions, because the bank strength is indirectly included in the empirical prediction. In combination, empirical and theoretical prediction provide partial explanations for bar and channel patterns. Increasing potential‐specific stream power implies more energy to erode banks and indeed correlates to channels with high width–depth ratio. Bar theory predicts that such rivers develop more bars across the width (higher Bi). At the transition from meandering to braiding, weakly braided rivers and meandering rivers with chutes are found. Rivers with extremely low stream power and width–depth ratios hardly develop bars or dynamic meandering and may be straight or sinuous or, in case of disequilibrium sediment feed, anastomosing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
4.
Historical planform changes in a 14.7 km reach of the lower Pages River were determined to assess whether they were autogenic (inherent in the river regime) or allogenic (driven by external changes) in nature so as to better focus river management activities and river restoration works. A pattern metamorphosis or complete change in river morphology occurred during the February 1955 flood. The peak discharge of this event exceeded the slope and grain size (intrinsic) threshold for braiding, converting the narrow, slightly sinuous stream to a wide, braided-like river. Five subsequent intrinsic threshold-exceeding floods did not cause further bar development because an over-widened channel already existed. Autogenic channel planform changes included sinuosity variations due to lateral migration and pattern metamorphosis due to the exceedance of a discharge–slope–grain size geomorphic threshold. Allogenic channel planform changes included: (1) realignment/channel straightening and artificial cutoffs by river training works; (2) lateral migration by increased bank erodibility due to riparian vegetation clearing; (3) lateral migration by the operation of a transitive geomorphic threshold involving the onset of a flood-dominated regime after 1946 and increased catchment runoff after 1830 due to large-scale clearing of catchment vegetation; and (4) the occurrence of a large flood in February 1955. Multiple forcing factors have clearly caused historical channel planform changes of the lower Pages River, making the design of river management and restoration works a complex matter outside the scope of simple formulaic protocols.  相似文献   
5.
Recent morphological evolution of the Lower Mississippi River   总被引:1,自引:0,他引:1  
This study documents slope and stream power changes in the Lower Mississippi River during the pre-cutoff (1880s–1930s), and post-cutoff (1943–1992) periods. The study reach extends from New Madrid, MO, to Natchez, MS, a distance of about 900 km. Analyses for six major reaches and 13 sub-reaches for the pre- and post-cutoff periods indicate that the river presently has a much larger slope and stream power than prior to the cutoffs. The largest increases have occurred between Fulton, TN, and Lake Providence, LA, where slope and stream power increases range from about 27% to 36% and 20% to 38%, respectively. Increases in slope and stream power in reaches upstream and downstream have also occurred, but to a lesser degree. Previous investigations have shown that no coarsening of the bed material has occurred since 1932, and that the bed material may actually be somewhat finer overall. As the Lower Mississippi River is not a sediment-starved system, an increase in stream power with no change in D50 would be expected to be offset by an increase in the bed material load as the river adjusts towards equilibrium. Previous investigators have inferred a reduction in the sediment loads on the Mississippi River this century based on analyses of total measured suspended loads. However, these results should be viewed as primarily representing the changes in wash load and should not be taken to imply that bed material loads have also decreased. Therefore, the bed material loads in the study reach should be greater than in the pre-cutoff period. Excess stream power in the sub-reaches directly affected by cutoffs resulted in scour that increased downstream bed material load. These elevated sediment loads play a key role in driving morphological adjustments towards equilibrium in the post-cutoff channel. The stability status of the channel in the study reach currently ranges from dynamic equilibrium in the farthest upstream reaches through severe degradation to dynamic equilibrium in the middle reaches, and aggradation in the lowest reaches. These evolutionary trends cannot be explained by consideration of changes in slope and stream power alone. Changes in the incoming bed material load to each reach generated by upstream channel evolution must also be considered.  相似文献   
6.
A lumped-mass model of a marine evacuation chute is presented based on the equations of Kane. The effects of wind load, internal mass transport and the motions of the ends are included. A sample of predicted motions and tensions is presented for a typical extreme environmental condition. The model may be used to assess the behaviour of the chute structure under a variety of emergency evacuation scenarios.  相似文献   
7.
Over a period of several decades, gullies have been observed in various stages of forming, growing and completing the cutoff of meander necks in Powder River. During one episode of overbank flow, water flowing over the down-stream bank of the neck forms a headcut. The headcut migrates up-valley, forming a gully in its wake, until it has traversed the entire neck, cutting off the meander. The river then follows the course of the gully, which is subsequently enlarged as the river develops its new channel. The complete process usually requires several episodes of high water: in only one of the five cases described herein was a meander cutoff initiated and completed during a single large flood. © 1998 John Wiley & Sons, Ltd.  相似文献   
8.
River bends occasionally meander to the point of cutoff, whereby a river shortcuts itself and isolates a portion of its course. This fundamental process fingerprints a river's long-term planform geometry, its stratigraphic record, and biogeochemical fluxes in the floodplain. Although meander cutoffs are common in fast-migrating channels, timelapse imagery of the Earth surface typically does not offer a long enough baseline for statistically robust analyses of these processes. We seek to bridge this gap by quantifying cutoff kinematics along the Humboldt River (Nevada) – a stream that, from 1994 to 2019, hosted an exceptionally high number of cutoffs (specifically, 174 of the chute type and 53 of the neck type). A coincidence between major floods and cutoff incidence is first suggestive of hydrographic modulation. Moreover, not just higher sinuosity but also upstream planform skewness is associated with higher cutoff incidence and channel widening for a sub-population of chute cutoffs. We propose a conceptual model to explain our results in terms of channel-flow structure and then examine the distances between adjacent cutoffs to understand the mechanisms governing their clustering. We find that both local and nonlocal perturbations together trigger the clustering of new cutoffs, over distances capped by the backwater length and over yearly to decadal timescales. Our research suggests that planform geometry and backwater controls might sway the occurrence of cutoff clusters – both local and nonlocal – thereby offering new testable hypotheses to explore the evolution of meandering-river landscapes that have significant implications for river engineering and stratigraphic modelling. © 2020 John Wiley & Sons, Ltd.  相似文献   
9.
Steady-state vertical distribution of cohesive sediments in a flow   总被引:1,自引:0,他引:1  
Settling velocity of diluted suspended aggregates is examined under steady-state conditions. It is shown that if the local settling velocity of the suspended mass of sediments at the bottom is gamma distributed, then, the vertical variation of the local mean settling velocity W¯ is proportional to a power 1/r of the local concentration C, where r is the gamma distribution parameter. That is a consequence of the suspended-sediment sorting produced by the vertical dynamics. The parameter r characterizes the range of settling velocity values for all the aggregates simultaneously in suspension. To cite this article: M. Sánchez et al., C. R. Geoscience 337 (2005).  相似文献   
10.
A cutoff defines the long-period termination of a Rayleigh-wave higher mode and, therefore is a key characteristic of higher mode energy relationship to several material properties of the subsurface. Cutoffs have been used to estimate the shear-wave velocity of an underlying half space of a layered earth model. In this study, we describe a method that replaces the multilayer earth model with a single surface layer overlying the half-space model, accomplished by harmonic averaging of velocities and arithmetic averaging of densities. Using numerical comparisons with theoretical models validates the single-layer approximation. Accuracy of this single-layer approximation is best defined by values of the calculated error in the frequency and phase velocity estimate at a cutoff. Our proposed method is intuitively explained using ray theory. Numerical results indicate that a cutoffs frequency is controlled by the averaged elastic properties within the passing depth of Rayleigh waves and the shear-wave velocity of the underlying half space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号