首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   5篇
  2017年   1篇
  2010年   1篇
  2005年   1篇
  2004年   2篇
  1996年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
大岔大坂MOR型和SSZ型蛇绿岩对北祁连洋演化的制约   总被引:9,自引:0,他引:9  
北祁连大岔大坂剖面保存了MOR型和SSZ型两类蛇绿岩,记录了两种构造环境的岩浆活动。剖面南段的蛇绿岩由蛇纹石化的超基性岩和辉长岩组成,其中辉长岩具有N-MORB地球化学特征,代表了扩张形成的洋壳。从辉长岩中分选出大量锆石,采用SHRIMP方法测得这些锆石的年龄为505±8Ma,代表了辉长岩的结晶年龄,它与熬油沟辉长岩(504Ma)和东草河辉长岩(497Ma)基本同时形成,表明寒武纪末期北祁连洋盆存在一次规模较大的海底扩张事件。剖面北段主要由枕状熔岩组成,其地球化学性质类似于玻安岩,代表了由洋壳向北俯冲形成的岛弧。枕状熔岩形成较晚(483Ma),这与其覆盖在辉长岩上的野外关系是一致的,说明从残留洋壳的形成到岛弧的出现间隔了大约20Ma。这项研究为认识北祁连洋盆的构造演化提供了重要依据。  相似文献   
2.
This study focuses on the origin of magma heterogeneity andthe genesis of refractory, boninite-type magmas along an arc–ridgeintersection, exposed in the Lewis Hills (Bay of Islands Ophiolite).The Lewis Hills contain the fossil fracture zone contact betweena split island arc and its related marginal oceanic basin. Threetypes of intrusions, which are closely related to this narrowtectonic boundary, have been investigated. Parental melts inequilibrium with the ultramafic cumulates of the PyroxeniteSuite are inferred to have high MgO contents and low Al2O3,Na2O and TiO2 contents. The trace element signatures of thesePyroxenite Suite parental melts indicate a re-enriched, highlydepleted source with 0·1 x mid-ocean ridge basalt (MORB)abundances of the heavy rare earth elements (HREE). InitialNd values of the Pyroxenite Suite range from -1·5 to+0·6, which overlap those observed for the island arc.Furthermore, the Pyroxenite Suite parental melts bear strongsimilarities to boninite-type equilibrium melts from islandarc-related pyroxenitic dykes and harzburgites. Basaltic dykessplit into two groups. Group I dykes have 0·6 x MORBabundances of the HREE, and initial Nd values ranging from +5·4to +7·5. Thus, they have a strong geochemical affinitywith basalts derived from the marginal basin spreading ridge.Group II dykes have comparatively lower trace element abundances(0·3 x MORB abundances of HREE), and slightly lower initialNd values (+5·4 to +5·9). The geochemical characteristicsof the Group II dykes are transitional between those of GroupI dykes and the Pyroxenite Suite parental melts. Cumulates fromthe Late Intrusion Suite are similarly transitional, with Ndvalues ranging from +2·9 to +4·6. We suggest thatthe magma heterogeneity observed in the Lewis Hills is due tothe involvement of two compositionally distinct mantle sources,which are the sub-island lithospheric mantle and the asthenosphericmarginal basin mantle. It is likely that the refractory, boninite-typeparental melts of the Pyroxenite Suite result from remeltingof the sub-arc lithospheric mantle at an arc–ridge intersection.Furthermore, it is suggested that the thermal-dynamic conditionsof the transtensional transform fault have provided the prerequisitefor generating magma heterogeneity, as a result of mixing relationshipsbetween arc-related and marginal basin-related magmas. KEY WORDS: Bay of Islands ophiolite; transform (arc)–ridge intersection; boninites; rare earth elements, Nd isotopes  相似文献   
3.
Major and trace element compositions of amphibolites and quartzose rocks in the 230-m-thick metamorphic sole underlying the mantle section of the Oman ophiolite in Wadi Tayin area were determined to investigate the chemical characteristics of the hydrous fluid released from subducted amphiboltie-facies slab. The fluid-immobile element compositions indicate that protoliths of these rocks are mid-ocean ridge basalt-like tholeiite and deep-sea chert, which is consistent with the idea that these rocks represent Tethyan oceanic crust overridden during the early, intraoceanic thrusting stage of the Oman ophiolite emplacement. The rare-earth element (REE) and high field-strength element concentrations of the amphibolites show limited variations, within a factor of two except for a few evolved samples, throughout transect of the sole. On the other hand, concentrations of fluid-mobile elements, especially B, Rb, K and Ba, in amphibolites are highly elevated in upper 30 m of the sole (> 600 °C in peak metamorphic temperature), suggesting the equilibration with evolved, B-Rb-K-Ba-rich fluids during prograde metamorphism. The comparison with amphibolites in the lower 150 m (500 to 550 °C) demonstrates that the trace element spectra of the fluids equilibrated with the high-level amphibolites may vary as a function of metamorphic temperature. The fluids are characterized by striking enrichments of B, Rb, K and Ba and moderate to minor enrichments of Sr, Li, Be and Pb. At higher temperature (up to 700 °C), the fluids become considerably enriched in light REE and Nb in addition to the above elements. The estimated trace element spectra of the fluids do not coincide with the compositions of basalts from matured intra-oceanic arcs, but satisfactorily explain the characteristics of the low-Pb andesites and boninites found in the Oman ophiolite. Compositional similarity between the boninites of Oman and other localities suggests that the fluids estimated here well represent the amphibolite-derived fluids involved in the magmatism of immatured, hot, shallow subduction zones.  相似文献   
4.
Western Ghats Belt of western Dharwar Craton is dominated by metavolcanic rocks (komatiites, high-magnesium basalts (HMBs), basalts, boninites) with occasional metagabbros. This rock-suite has undergone post-magmatic alteration processes corresponding to greenschist- to lower-amphibolite facies conditions. Komatiites are Al-depleted, characterized by lower Al2O3/TiO2 and high CaO/Al2O3. Their trace element distribution patterns suggest most of the primary geochemical compositions are preserved with minor influence of post-magmatic alteration processes and negligible crustal contamination. Chemical characteristics of Al-depleted komatiites imply their derivation from deeper upper mantle with/without garnet involvement. HMBs and basalts are differentiated based on their magnesium content. Basalts and occasionally associated gabbroic sills have similar geochemical characteristics. HMB are characterized by light rare earth element (LREE) enrichment, with significant Nb–Ta and Zr negative anomalies. Basalts and associated gabbros display tholeiitic affinity, with LREE-enriched to slightly fractionated heavy rare earth element (HREE) patterns. Boninites are distinctive in conjunction of low abundances of incompatible elements with respect to the studied komatiites. Chondrite-normalized REE patterns of boninites show relative enrichment in LREE and HREE with respect to MREE. Prominent island arc signatures are evident in HMB, basalts, boninites, and gabbros in terms of their Nb–Ta and Zr–Hf negative anomalies, LREE enrichment and HFSE depletion. It is suggested that these HMB–basalts (associated gabbros)–boninites are the products of arc magmatism. Their REE chemistry attests to a gradual transition in melting depth varying between spinel and garnet stability field in an arc regime. The close spatial association but contrasting elemental characteristics of komatiites and HMB–basalts–boninites can be explained by a plume-arc model, in which the ~3.0 Ga komatiites are considered to be the products of plume volcanism in an oceanic setting, while the HMB, basalts, boninites, and associated gabbros were emplaced in a continental margin setting around 2.8–2.7 Ga.  相似文献   
5.
The distinctive island-arc ankaramites exemplified by the activeVanuatu arc may be produced by melting of refractory lherzoliteunder conditions in which melting is fluxed by H2O + CO2. Parentalpicritic ankaramite magmas with maximum CaO/Al2O3 to  相似文献   
6.
The Lower Unit of the ophiolitic sequence of Northern Argolis comprises turbiditic sediments and olistostromes, both containing ophiolitic clasts, mainly crystal fragments (clinopyroxene, plagioclase, Cr-spinel, amphibole) in the turbidites and cumulitic intrusives (quartz noritic amphibole-bearing gabbros), subvolcanic rocks (dolerites) and various effusive lithologies (mainly Si-rich basalts to basaltic andesites) in the olistostromes. The volcanic rocks belong to three groups. In rare cases the lavas are mineralogically and chemically comparable with MORB; most of them, and the subvolcanic rocks, contain primary quartz and amphibole, orthopyroxene, Ca-rich plagioclase and clinopyroxene±Cr-spinels. All rocks are Si- and Mg-rich and have high concentrations of ‘compatible’ and very low concentrations of ‘incompatible’ elements. The REE profiles are characteristically U-shaped. Many of the observed features are comparable with those of subduction-related lavas and, in particular, with present day boninites and ophiolitic boninitic rocks. The gabbroic rocks have mineralogical and chemical analogies with the dolerites and lavas, thus it may be argued that the gabbros represent the intrusive counterparts of the ‘boninitic’ volcanic clasts. The mineral clasts occurring in the turbidites are chemically comparable with those analysed in the ophiolitic clasts of the overlying olistostrome. It may be concluded that the ophiolitic clasts of both olistostromes and turbidites were derived from a subduction-related sequence. An island arc–back-arc system might explain the occurrence of both boninitic and MORB-type lithologies in the olistostrome of Angelokastron. This may support the hypothesis of the onset of compressive tectonics along the Pindos Ocean during the Jurassic. © 1996 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号