首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   13篇
  国内免费   14篇
测绘学   1篇
大气科学   1篇
地球物理   74篇
地质学   139篇
海洋学   5篇
综合类   1篇
自然地理   5篇
  2024年   4篇
  2023年   3篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   8篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   7篇
  2013年   15篇
  2012年   8篇
  2011年   4篇
  2010年   6篇
  2009年   11篇
  2008年   16篇
  2007年   23篇
  2006年   16篇
  2005年   9篇
  2004年   14篇
  2003年   9篇
  2002年   5篇
  2001年   4篇
  2000年   11篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1994年   6篇
  1993年   2篇
  1987年   2篇
  1978年   1篇
  1971年   2篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
1.
We have developed a method for analytically solving the porous medium flow equation in many different geometries for horizontal (two‐dimensional), homogeneous and isotropic aquifers containing impermeable boundaries and any number of pumping or injection wells located at arbitrary positions within the system. Solutions and results are presented for rectangular and circular aquifers but the method presented here is easily extendible to many geometries. Results are also presented for systems where constant head boundary conditions can be emulated internal to the aquifer boundary. Recommendations for extensions of the present work are briefly discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
 The supraregional GIS-supported stochastical model, WEKU, for the determination of groundwater residence times in the upper aquifers of large groundwater provinces is presented. Using a two-dimensional analytical model of groundwater flow, groundwater residence times are determined within two extreme cases. In the first case, maximal groundwater residence times are calculated, representing the part of groundwater, that is drained by the main surface water of a groundwater catchment area. In the second case, minimal groundwater residence times for drainage into the nearest surface water are determined. Using explicit distribution functions of the input parameters, mean values as well as potential ranges of variations of the groundwater residence times are derived. The WEKU model has been used for the determination of groundwater residence times throughout Germany. The model results – mean values and deviations of the groundwater velocity and the maximal and minimal groundwater residence times in the upper aquifers – are presented by general maps and discussed in detail. It is shown that the groundwater residence times in the upper aquifer vary regionally, differentiated between less than 1 year and more than 2000 years. Using this information, the time scales can be specified, until measures to remediate polluted groundwater resources may lead to a substantial groundwater quality improvement in the different groundwater provinces of Germany. With respect to its supraregional scale of application, the WEKU model may serve as a useful tool for the supraregional groundwater management on a state, federal or international level. Received: 15 August 1995 · Accepted: 15 October 1995  相似文献   
3.
A salt water lens is found above fresh water under the shore between Dunkerque (France) and Nieuwpoort (Belgium). This inverse density distribution is in a dynamic equilibrium. It develops due to the infiltration of salt water on the back shore during high tide. Under this salt water lens, water infiltrated in the adjacent dune area flows towards the sea and discharges at the seabed. This water quality distribution differs from the classic salt water wedge under fresh water described in the literature. Here, the evolution to this water quality distribution is simulated with a density dependent numerical model. A large tidal range, shore morphology and a permeable groundwater reservoir are the main conditions for the observed water quality distribution. By altering these conditions, intermediate water quality distributions between the classic salt water wedge and the one discussed here develop. Based on these simulations, it is expected that similar kinds of inverse density distribution could be present in a number of coastal areas, which have tides, a gently sloping shore and a permeable substratum.  相似文献   
4.
Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico   总被引:1,自引:0,他引:1  
The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7–10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity. Electronic Publication  相似文献   
5.
We consider the response of a deep unconfined horizontal aquifer to steady, annual, and monthly recharge. A groundwater divide and a zero head reservoir constrain the aquifer, so that sinusoidal monthly and aperiodic annual recharge fluctuations create transient specific discharge near the reservoir and an unsteady water table elevation inland. One existing and two new long-term data sets from the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate and confirm hydraulic properties in a set of analytical models. [Geohydrology and simulated groundwater flow, 1992] data and a new power law for tritiugenic helium to tritium ratios calibrate the steady recharge that drives the classical parabolic model of steady hydraulics [Applied Hydrogeology, 2001]. Observed water table and gradient fluctuations calibrate the transient recharge models. In the latter regard, monitoring wells within 1 km of Buttermilk Bay exhibit appreciable specific discharge and reduced water table fluctuations. We apply [Trans Am Geophys Union 32(1951)238] periodic model to the monthly hydraulics and a recharge convolution integral [J Hydrol 126(1991)315] to annual flow. An infiltration fraction of 0.79 and a consumptive use coefficient of 1.08×10−8 m/s °C relate recharge to precipitation and daylight weighted temperature across all three time scales. Errors associated with this recharge relation decrease with increasing time scale.  相似文献   
6.
Signatures in flowing fluid electric conductivity logs   总被引:1,自引:0,他引:1  
Flowing fluid electric conductivity logging provides a means to determine hydrologic properties of fractures, fracture zones, or other permeable layers intersecting a borehole in saturated rock. The method involves analyzing the time-evolution of fluid electric conductivity (FEC) logs obtained while the well is being pumped and yields information on the location, hydraulic transmissivity, and salinity of permeable layers. The original analysis method was restricted to the case in which flows from the permeable layers or fractures were directed into the borehole (inflow). Recently, the method was adapted to permit treatment of both inflow and outflow, including analysis of natural regional flow in the permeable layer. A numerical model simulates flow and transport in the wellbore during flowing FEC logging, and fracture properties are determined by optimizing the match between simulation results and observed FEC logs. This can be a laborious trial-and-error procedure, especially when both inflow and outflow points are present. Improved analyses methods are needed. One possible tactic would be to develop an automated inverse method, but this paper takes a more elementary approach and focuses on identifying the signatures that various inflow and outflow features create in flowing FEC logs. The physical insight obtained provides a basis for more efficient analysis of these logs, both for the present trial and error approach and for a potential future automated inverse approach. Inflow points produce distinctive signatures in the FEC logs themselves, enabling the determination of location, inflow rate, and ion concentration. Identifying outflow locations and flow rates typically requires a more complicated integral method, which is also presented in this paper.  相似文献   
7.
The Castellón Plain alluvial aquifer, Spain, is intensively exploited to meet the demand for agricultural irrigation and industrial water supply. The geochemistry of its groundwater shows complex salinization in the northern and southern parts of the aquifer, with significant pollution from human origin in the central portion. Boron content and B isotope geochemistry are useful for distinguishing between various sources of pollution and their relative importance in different parts of this aquifer. Boron concentrations in the groundwater vary between 0.01 and 0.85 mg/L. In the more saline groundwaters, found at the northern and southern ends of the study area, the presence of B is linked to inputs from seawater and water with a calcium-magnesium sulphate facies, which feed the aquifer and clearly influence the chemistry of its waters. Evidence of B adsorption processes in some samples is shown by the low B/Cl ratios and the high values of δ11B. In the central portion of the aquifer, the high B/Cl ratios and the strongly negative δ11B are related to pollution of human origin.  相似文献   
8.
The spatial and temporal distribution of near-shore fresh submarine groundwater discharge (SGD) was characterised from the coastal aquifers of the Willunga Basin, South Australia, an extensive aquifer system that supports an important viticultural region. Measurements of electrical conductivity (EC) and 222Rn (radon) activity were collected at 19 sites along the coastline during the Southern Hemisphere spring (2011) and summer (2013). At each site, samples were collected from the surf zone as well asporewater from beach sediment in the intertidal zone. Surf-zone radon activity ranged from <5 to 70mBq L–1, and intertidal porewater radon ranged over two orders of magnitude (220–36 940 mBq L–1) along the Willunga Basin coastline during both surveys. Overall, surf-zone and porewater EC was lower in the spring 2011 survey than in the summer 2013 survey. Porewater EC was similar to that of coastal water at most sites along the coastline, except at three sites where porewater EC was found to be lower than coastal water during both surveys, and three sites where evaporated seawater was observed in the summer survey. Based on the patterns in radon and EC along the coastline, two sites of localised fresh SGD were identified, in addition to a groundwater spring that is known to discharge to the coast. The results indicate that near-shore fresh SGD occurs as localised seeps rather than diffuse seepage along the entire coastline. The apparent absence of groundwater discharge at most locations is also consistent with current evidence suggesting that extensive groundwater pumping within the basin has resulted in seawater intrusion across much of the coastline. These observations also suggest that previous studies are likely to have over-estimated SGD rates from the Willunga Basin because they assumed that SGD occurred along the entire coastline.  相似文献   
9.
Over a large area of the Bengal delta in West Bengal, India, arsenic distribution patterns in groundwater were studied. One hundred and ten boreholes at different target locations were made, subsurface sediments were logged and analysed, and arsenic values in sediments vis-à-vis groundwater were compared. The study elucidates the subsurface geology of the western part of Bengal delta and characterises the sediments that were intersected in different boreholes with contrasting values of arsenic in groundwater. It reveals an existence of multiple aquifers stacked over each other. Depending on the color and nature of aquifer-sands and their overlying clay beds six aquifer types (Type-1 to Type-6) are classified and described. Sediment-arsenic for all the varieties of aquifer sands are near similar but the groundwater-arsenic of these six aquifers varies widely. Type-2 and Type-5 aquifers host arsenic-contaminated groundwater whereas the other four aquifers are arsenic-free. Type-2 and Type-5 aquifers are capped by a grey to dark grey soft organic matter-rich clay unit which makes these aquifers semi-confined to leaky-confined. These contribute in releasing arsenic from the sediments. The results of this study are employed in a proposed georemedial measure against this hazardous toxic element.  相似文献   
10.
The effect of parametric uncertainty in recharge rate and spatial variability of hydraulic conductivity upon free-surface flow is investigated in a stochastic framework. We examine the three-dimensional free-surface gravitational flow problem for sloped mean uniform flow in a randomly heterogeneous porous medium under the influence of random recharge. We develop analytic solutions for the variance of free-surface position, head, and specific discharge on the free surface. Additionally, we obtain semi-analytic solutions for the statistical moments of head and specific discharge beneath the free-surface. Statistical moments are derived using a first-order approximation and then compared with their parallel in an unbounded medium. The effect of recharge mean and variability on the statistical moments is analyzed. Results can be applied to more complex flows, slowly varying in the mean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号