首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   24篇
  国内免费   62篇
测绘学   1篇
大气科学   26篇
地球物理   16篇
地质学   180篇
海洋学   3篇
综合类   7篇
自然地理   9篇
  2023年   4篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   8篇
  2018年   10篇
  2017年   9篇
  2016年   9篇
  2015年   16篇
  2014年   15篇
  2013年   22篇
  2012年   13篇
  2011年   14篇
  2010年   9篇
  2009年   13篇
  2008年   7篇
  2007年   5篇
  2006年   12篇
  2005年   10篇
  2004年   9篇
  2003年   8篇
  2002年   12篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   7篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
排序方式: 共有242条查询结果,搜索用时 156 毫秒
1.
This paper is aimed towards investigating the filtration law of an incompressible viscous Newtonian fluid through a rigid non-inertial porous medium (e.g. a porous medium placed in a centrifuge basket). The filtration law is obtained by upscaling the flow equations at the pore scale. The upscaling technique is the homogenization method of multiple scale expansions which rigorously gives the macroscopic behaviour and the effective properties without any prerequisite on the form of the macroscopic equations. The derived filtration law is similar to Darcy's law, but the tensor of permeability presents the following remarkable properties: it depends upon the angular velocity of the porous matrix, it verifies Hall–Onsager's relationship and it is a non-symmetric tensor. We thus deduce that, under rotation, an isotropic porous medium leads to a non-isotropic effective permeability. In this paper, we present the results of numerical simulations of the flow through rotating porous media. This allows us to highlight the deviations of the flow due to Coriolis effects at both the microscopic scale (i.e. the pore scale), and the macroscopic scale (i.e. the sample scale). The above results confirm that for an isotropic medium, phenomenological laws already proposed in the literature fails at reproducing three-dimensional Coriolis effects in all types of pores geometry. We show that Coriolis effects may lead to significant variations of the permeability measured during centrifuge tests when the inverse Ekman number Ek−1 is 𝒪(1). These variations are estimated to be less than 5% if Ek−1<0.2, which is the case of classical geotechnical centrifuge tests. We finally conclude by showing that available experimental data from tests carried out in centrifuges are not sufficient to determining the effective tensor of permeability of rotating porous media. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
We study the aspect of unstable behavior (like strain localization bands) in elastic solids as a consequence of micro-fracturing. A two-scale approach of computational homogenization is considered. The macroscopic behavior is investigated by finite element computations on a unit cell. At the micro-level, we consider a granular structure with elastic grains. The inter-granular boundaries are modeled with cohesive laws, friction and unilateral contact. We show that decohesion between grains gives rise to macro-instabilities, indicated by the loss of ellipticity, typical for deformation localization bands. The relation between the microscopic softening on inter-granular boundaries and the onset of macro-instabilities is studied through numerical examples. The influence of the cohesive law and friction parameters is analyzed. For periodic distributions of granular structures, we prove the loss of periodicity by failure and the corresponding size dependence effect in the homogenized response. We present numerical examples of bifurcation of solutions for granular cell structures and of particular solutions specific to elementary volumes with periodic cell distribution. Size dependence appears in the unstable regime and is strongly influenced by cohesion and friction parameters.  相似文献   
3.
以大兴安岭北部地区为例,研究了浅覆盖区土壤与基岩化学成分的关系。指出浅覆盖区残积型土壤主要造岩元素组合继承了基岩元素组合特征;在岩石风化成土过程中,元素再分配和迁移使土壤中大多数元素(氧化物)含量产生明显的“均一化”。在此基础上,对土壤地球化学异常的识别与评价问题进行了讨论并提出了建议。  相似文献   
4.
平落坝储层有机包裹体特征与气藏形成过程研究   总被引:4,自引:0,他引:4  
高岗  黄志龙 《沉积学报》2002,20(1):156-159
通过储集层成岩作用与有机包裹体的研究认为,研究区储集层有机包裹体主要通过交代和重结晶作用而形成,有各种相态形式,主要分布在石英颗粒内溶蚀缝或孔隙中,构造裂缝中基本未见有机包裹体。上三叠统储集层包裹体丰度明显高于侏罗系沙溪庙组。香二气藏砂岩有机包裹体均一温度主峰在 10 0~ 110℃;沙溪庙气藏砂岩有机包裹体均一温度主峰在 90~ 10 0℃。香二气藏形成时间早,经历了印支期少量注入到印支期末-喜山早期大量注入,再到喜山晚期调整、部分注入的过程。沙溪庙气藏天然气注入则主要发生于喜山运动期。  相似文献   
5.
Conservation tillage and input use   总被引:1,自引:0,他引:1  
 There continues to be a question as to the overall effectiveness of conservation tillage practices in reducing the impact of agricultural production on the environment. While it is generally recognized that water runoff and soil erosion will decline further, as tillage and mulch tillage systems are not used more extensively on cropland, what will happen to pesticide and fertilizer use remains uncertain. To gain some insight into this, the conservation tillage adoption decision is modelled. On the assumption that the decision to adopt conservation tillage is a two-step procedure, the first decision is whether or not to adopt a conservation tillage production system and the second concerns the extent to which conservation tillage should be used – appropriate models of the Cragg and Heckman (dominance) type are estimated. Based on farm-level data on corn production in the United States for 1987, the profile of a farm on which conservation tillage was adopted is that the cropland had above-average slope and experienced above-average rainfall, the farm was a cash grain enterprise, and it had an above-average expenditure on pesticides and a below-average expenditure on fuel and custom pesticide applications. Additionally, for a farm adopting a no-tillage production practice, an above-average expenditure was made on fertilizer. Received: 18 September 1995 · Accepted: 6 December 1995  相似文献   
6.
From water to tillage erosion dominated landform evolution   总被引:3,自引:1,他引:3  
While water and wind erosion are still considered to be the dominant soil erosion processes on agricultural land, there is growing recognition that tillage erosion plays an important role in the redistribution of soil on agricultural land. In this study, we examined soil redistribution rates and patterns for an agricultural field in the Belgian loess belt. 137Cs derived soil erosion rates have been confronted with historical patterns of soil erosion based on soil profile truncation. This allowed an assessment of historical and contemporary landform evolution on agricultural land and its interpretation in relation to the dominant geomorphic process. The results clearly show that an important shift in the relative contribution of tillage and water erosion to total soil redistribution on agricultural land has occurred during recent decades. Historical soil redistribution is dominated by high losses on steep midslope positions and concavities as a result of water erosion, leading to landscape incision and steepening of the topography. In contrast, contemporary soil redistribution is dominated by high losses on convex upperslopes and infilling of slope and valley concavities as a result of tillage, resulting in topographic flattening. This shift must be attributed to the increased mechanization of agriculture during recent decades. This study shows that the typical topographical dependency of soil redistribution processes and their spatial interactions must be accounted for when assessing landform and soil profile evolution.  相似文献   
7.
This paper advocates the use of a multiphase model, already developed for static or quasi‐static geotechnical engineering problems, for simulating the behaviour of piled raft foundations subject to horizontal as well as rocking dynamic solicitations. It is shown that such a model, implemented in a FEM code, yields appropriate predictions for the foundation impedance characteristics, provided that shear and bending effects in the piles are taken into account, thus corroborating the findings of the asymptotic homogenization theory. Besides, it is notably pointed out that such a multiphase‐based computational tool makes it possible to assess the dynamic behaviour of pile groups in a much quicker way than when using direct numerical simulations, which may face oversized problems when large pile groups are concerned. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
8.
Conceived as a potential alternative to the classical design methods employed for analyzing the stability of underground structures driven in jointed rocks, the homogenization approach stems from the heuristic idea that, from a macroscopic point of view, a rock mass cut by a network of joints may be perceived as a homogenized continuum. The strength properties of the latter can be theoretically obtained from the failure conditions of its individual constituents: rock matrix and joint interfaces. At the material level, the limit analysis reasoning is used in the context of homogenization to formulate the homogenized strength criterion of a jointed rock mass in the particular situation of a single set of parallel joints. As it could be expected, the obtained closed‐form expressions show the strength anisotropy induced by joint preferential orientation. The support functions (π functions) associated with the homogenized strength criterion are also determined in both plane strain and three‐dimensional cases. This criterion is then applied to the investigation of stability analysis of a tunnel excavated in a jointed rock mass. Upper bounds estimated of the stability factor are derived from the implementation of the kinematic approach directly on the homogenized underground structure. Finally, the approach is applied to analyze and discuss the collapse of the Pinheiros subway station (São Paulo, Brazil). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
A detailed multiscale analysis is presented of the swelling phenomenon in unsaturated clay-rich materials in the linear regime through homogenization. Herein, the structural complexity of the material is formulated as a three-scale, triple porosity medium within which microstructural information is transmitted across the various scales, leading ultimately to an enriched stress-deformation relation at the macroscopic scale. As a side note, such derived relationship leads to a tensorial stress partitioning that is reminiscent of a Terzaghi-like effective stress measure. Otherwise, a major result that stands out from previous works is the explicit expression of swelling stress and capillary stress in terms of micromechanical interactions at the very fine scale down to the clay platelet level, along with capillary stress emerging due to interactions between fluid phases at the different scales, including surface tension, pore size, and morphology. More importantly, the swelling stress is correlated with the disjoining forces due to electrochemical effects of charged ions on clay minerals and van der Waals forces at the nanoscale. The resulting analytical expressions also elucidate the role of the various physics in the deformational behavior of clayey material. Finally, the capability of the proposed formulation in capturing salient behaviors of unsaturated expansive clays is illustrated through some numerical examples.  相似文献   
10.
Drying of deformable porous media results in their shrinkage, and it may cause cracking provided that shrinkage deformations are hindered by kinematic constraints. This is the motivation to develop a thermodynamics‐based microporoelasticity model for the assessment of cracking risk in partially saturated porous geomaterials. The study refers to 3D representative volume elements of porous media, including a two‐scale double‐porosity material with a pore network comprising (at the mesoscale) 3D mesocracks in the form of oblate spheroids, and (at the microscale) spherical micropores of different sizes. Surface tensions prevailing in all interfaces between solid, liquid, and gaseous matters are taken into account. To establish a thermodynamics‐based crack propagation criterion for a two‐scale double‐porosity material, the potential energy of the solid is derived, accounting—in particular—for mesocrack geometry changes (main original contribution) and for effective micropore pressures, which depend (due to surface tensions) on the pore radius. Differentiating the potential energy with respect to crack density parameter yields the thermodynamical driving force for crack propagation, which is shown to be governed by an effective macrostrain. It is found that drying‐related stresses in partially saturated mesocracks reduce the cracking risk. The drying‐related effective underpressures in spherical micropores, in turn, result in a tensile eigenstress of the matrix in which the mesocracks are embedded. This way, micropores increase the mesocracking risk. Model application to the assessment of cracking risk during drying of argillite is the topic of the companion paper (Part II). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号