首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
地球物理   30篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2011年   2篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1980年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
本文详细地分析了用数字化仪和激光扫描仪对模拟加速度记录进行数字化时所产生的误差及消除这些误差的方法,并开发了相关处理软件。数字化误差由数字化设备的系统误差和读数员在操作过程中的随机误差迭加而成,随机数字化误差是具有各态历经性质的、其振幅按高斯规律分布的平稳随机过程。利用激光扫描仪做强震记录数字化,工作效率很高。本文给出了激光扫描仪分析处理软件和消除数字化噪声实例。  相似文献   
2.
An approach to generate artificial earthquakeaccelerograms on hard soil sites is presented. Eachtime-history of accelerations is considered as arealization of a non-stationary gaussian stochasticprocess, with statistical parameters depending onmagnitude and source-to-site distance. In order tolink the values of these parameters for each groundmotion record with the corresponding magnitude andsource-to-site distance, semi-empirical functionalrelations called generalized attenuationfunctions are determined. The set of realground-motion time histories used to obtain thesefunctions correspond to shocks generated at differentsources and recorded at different sites in thevicinity of the southern coast of Mexico. The resultsshow significant dispersion in the parameters of themodel adopted, which reflect that associated with thereal earthquakes included in the sample employed.The problem of conditional simulation of artificialacceleration time histories for prescribed intensitiesis briefly presented, but its detailed study is leftfor a companion paper. The criteria and modelsproposed are applied to generate two families ofartificial acceleration records for recurrenceintervals of 100 and 200 years at a specific sitelocated in the region under study. The results shownin this article correspond to acceleration timehistories recorded on firm ground for earthquakesgenerated at the subduction zone that runs along thesouthern coast of Mexico, and cannot be generalized tocases of earthquakes generated at other sources orrecorded at other types of local conditions. Thismeans that the methods and functional forms presentedhere are applicable to these other cases, but thevalues of the parameters that characterize thosefunctions may differ from those presented here.  相似文献   
3.
Shallow strike slip earthquakes on vertical faults are modelled as two-dimensional antiplane strain ruptures in a uniformly prestressed homogeneous halfspace. Behind the rupture front, which is specified, the stress drops to a lower value. The elastodynamic boundary value problem is solved with a finite difference method. Several cases are studied, which include symmetric and one-directional rupture propagation, surface faulting, multiple events, variable rupture velocity, sticking and rebreaking of the fault plane. The time function of displacement, velocity and acceleration are interpreted as signals generated by events in the focus, namely starting, stopping and breaking through the surface of the rupture. The model explains peak velocity and peak acceleration in the near field of M5.5–6 earthquakes; which are typically about 0.2 m/s and 5 m/s2 at 10 km epicentral distance, if the rupture velocity is close to the shear wave velocity. Sticking of the fault does not alter the accelerograms significantly, but it increases the seismic moment in simple events and decreases it in multiple events.Contribution No. 226, Geophysical Institute, University of Karlsruhe.  相似文献   
4.
This article illustrates the results of a study aimed at developing a methodology for the automatic identification of the seismic input at outcropping rock sites and flat topographic conditions necessary to carry out non-linear dynamic analysis of structures and geotechnical systems. The seismic input is provided in terms of a set of 7 natural accelerograms recorded on outcropping rock and satisfying the average spectral compatibility requirements prescribed by the Italian seismic code (NTC08).The study focuses on the territory encompassing Tuscany region in Central Italy and it has been carried out for six return periods, which are 50, 75, 101, 475, 712 and 949 years. The procedure involved four main steps: (1) grouping of the response spectra with similar features; (2) definition of the reference response spectrum for each group; (3) selection of spectrum-compatible accelerograms using the reference response spectrum of each group; and (4) linear scaling of the accelerograms to satisfy the compatibility requirement with respect to other response spectra of the group. The last step is implemented through an interactive, user-friendly program named SCALCONA 2.0, which provides the seismic input in agreement with the site location and return period specified by the user. The program is freely available at the following web site: http://www.rete.toscana.it/sett/pta/sismica/01informazione/banchedati/input_sismici/progettazione/index.htm.  相似文献   
5.
The range of response frequencies for which spectral ordinates obtained from accelerograms may be considered reliable is limited by several factors, primary among them being the effects of filters that are routinely applied to remove noise from the records. Considerable attention has been focused on the low‐frequency limit of the usable spectral ordinates because of various engineering applications requiring long‐period spectral accelerations or displacements but only recently have rational approaches to selecting the high‐frequency limit been proposed. Since there are applications for which the high‐frequency spectral ordinates are important, the approaches to this issue presented in the recent studies are reviewed and their application to the ground‐motion database from Europe and the Middle East is explored. On the basis of the results of these analyses, it is concluded that a large proportion of this dataset can be used to provide reliable estimates of response spectral ordinates at much shorter periods than may have previously been considered feasible. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
6.
A fully nonstationary stochastic model for strong earthquake ground motion is developed. The model employs filtering of a discretized white‐noise process. Nonstationarity is achieved by modulating the intensity and varying the filter properties in time. The formulation has the important advantage of separating the temporal and spectral nonstationary characteristics of the process, thereby allowing flexibility and ease in modeling and parameter estimation. The model is fitted to target ground motions by matching a set of statistical characteristics, including the mean‐square intensity, the cumulative mean number of zero‐level up‐crossings and a measure of the bandwidth, all expressed as functions of time. Post‐processing by a second filter assures zero residual velocity and displacement, and improves the match to response spectral ordinates for long periods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
7.
A new neural‐network‐based methodology for generating artificial earthquake spectrum compatible accelerograms from response spectra was proposed in 1997, in which, the learning capabilities of neural networks were used to develop the knowledge of the inverse mapping from the response spectra to earthquake accelerograms. Recently, this methodology has been further extended and enhanced. This paper presents a new stochastic neural network that is capable of generating multiple earthquake accelerograms from a single‐response spectrum. A new stochastic feature to the neural network has been combined with a new scheme for data compression using the replicator neural networks developed in the original method. A benefit of this extended methodology is gaining efficiency in compressing the earthquake accelerograms and extracting their characteristics. The proposed method produces a stochastic ensemble of earthquake accelerograms from any response spectra or design spectra. An example is presented that used 100 recorded accelerograms to train the neural network and several design spectra and response spectra to test this improved methodology. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
8.
The non‐stationary Functional Series time‐dependent autoregressive moving average (TARMA) modelling and simulation of earthquake ground motion is considered. Full Functional Series TARMA models, capable of modelling both resonances and antiresonances, are examined for the first time via a novel mixed parametric/non‐parametric estimation scheme, and critical comparisons with pure TAR and recursive ARMA (RARMA)‐recursive maximum likelihood (RML) adaptive filtering type modelling are made. The study is based upon two California ground motion signals: a 1979 El Centro accelerogram and a 1994 Pacoima Dam accelerogram. A systematic analysis, employing various functional subspaces and model orders, leads to two Haar function based models: a TARMA(2,4)8 model for the El Centro case and a TARMA(6,2)10 model for the Pacoima Dam case. Both models are formally validated and their simulation (synthesis) capabilities are demonstrated via Monte Carlo experiments focusing on important time domain signal characteristics. The Functional Series TAR/TARMA models are shown to achieve parsimony, as well as superior accuracy and simulation capabilities, over their RARMA counterparts. Copyright © 2001 John Wiley & Sons Ltd.  相似文献   
9.
A method for the development of earthquake intensitydamage relations, given as fragility curves and damage probability matrices is proposed in this paper. The proposed method is applied on reinforced-concrete frame-wall structures. Two sets of fragility curves and damage probability matrices are developed. The first one is for reinforced-concrete frame structures lower than 10 stories. For this purpose, a six-story frame structure is used. The other set is defined for reinforced-concrete frame-wall structures higher than 10 stories. A 16-story frame-wall structure was chosen as a sample. The sample structures were designed according to Macedonian design code. The conditions of the local seismic hazard were the subject of special concern for the development of earthquake intensity–damage relations. Because of the limited number of real time histories from the Skopje region, a set of 240 synthetic time histories were generated. Geological dates from the Skopje region were used. Response of the sample structures under earthquake excitation was defined performing nonlinear dynamic analysis. Modeling of the nonlinear behavior of the structural elements was completed according to state-of-the-art methods in this field. A modified Park and Ang damage model was chosen as a measure of the structure's response to earthquake excitation. Five damage states were defined to express the condition of damage. As a result of the analytical research, the values of the global damage index corresponding to each damage state were determined. Using the dates from the nonlinear dynamic analysis of the sample structures under all 240 synthetic time histories, the two sets of fragility curves and damage probability matrices were defined.  相似文献   
10.
基于渐进谱的幅值和频率非平稳人造地震动拟合   总被引:1,自引:1,他引:0  
在Priestley渐进谱和常用反应谱拟合技术基础上,提出一种拟合目标渐进谱生成幅值和频率非平稳地震动加速度时程的方法。由Nakayama方法获得目标渐进谱,定义[0,2π]的随机数作为初始相位。在迭代过程中考虑渐进谱和相位的影响,同时调整合成时程的渐进谱和相位,直到满足迭代的收敛要求。本文方法合成时程不仅保留目标渐进谱的时频非平稳特性,相位也具有与实际地震动相符合的时频非平稳性。时程的相关分析表明,输入不同初相位合成的时程在统计上互不相关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号