首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   62篇
  国内免费   56篇
测绘学   50篇
大气科学   59篇
地球物理   160篇
地质学   172篇
海洋学   69篇
天文学   13篇
综合类   18篇
自然地理   150篇
  2024年   1篇
  2023年   3篇
  2022年   10篇
  2021年   13篇
  2020年   16篇
  2019年   14篇
  2018年   20篇
  2017年   26篇
  2016年   23篇
  2015年   19篇
  2014年   30篇
  2013年   44篇
  2012年   28篇
  2011年   31篇
  2010年   30篇
  2009年   39篇
  2008年   35篇
  2007年   31篇
  2006年   40篇
  2005年   20篇
  2004年   19篇
  2003年   15篇
  2002年   19篇
  2001年   20篇
  2000年   27篇
  1999年   25篇
  1998年   7篇
  1997年   16篇
  1996年   13篇
  1995年   8篇
  1994年   8篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有691条查询结果,搜索用时 312 毫秒
1.
This paper briefly reviews the formulations used over the last 40 years for the solution of problems involving tensile cracking, with both the discrete and the smeared crack approaches. The paper focuses on the smeared approach, identifying as its main drawbacks the observed mesh‐size and mesh‐bias spurious dependence when the method is applied ‘straightly’. A simple isotropic local damage constitutive model is considered, and the (exponential) softening modulus is regularized according to the material fracture energy and the element size. The continuum and discrete mechanical problems corresponding to both the weak discontinuity (smeared cracks) and the strong discontinuity (discrete cracks) approaches are analysed and the question of propagation of the strain localization band (crack) is identified as the main difficulty to be overcome in the numerical procedure. A tracking technique is used to ensure stability of the solution, attaining the necessary convergence properties of the corresponding discrete finite element formulation. Numerical examples show that the formulation derived is stable and remarkably robust. As a consequence, the results obtained do not suffer from spurious mesh‐size or mesh‐bias dependence, comparing very favourably with those obtained with other fracture and continuum mechanics approaches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
3.
By using small scale model tests, the interference effect on the vertical load-deformation behavior of a number of equally spaced strip footings, placed on the surface of dry sand, was investigated. At any stage, all the footings were assumed to (i) carry exactly equal magnitude of load, and (ii) settle to the same extent. No tilt of the footing was permitted. The effect of clear spacing (s) among footings on the results was explored. A new experimental setup was proposed in which only one footing needs to be employed rather than a number of footings. The bearing capacity increases continuously with decrease in spacing among the footings. The interference effect becomes further prominent with increase in soil friction angle. In contrast to an increase in the bearing capacity, with decrease in spacing of footings, an increase in the footing settlement associated with the ultimate state of shear failure was observed. The present experimental observations were similar to those predicted by the available theory, based on the method of characteristics. As compared to the theory, the present experimental data, however, indicates much greater effect of interference especially for larger spacing among footings.  相似文献   
4.
5.
6.
Large scale reclamation works in coastal areas of the Nakdong River plain are at various stages of progress, since early 1990's on in-situ soft marine clay deposits. These deposits are of the order of 30 to 40 m thick. A realistic rapid characterization of soft ground would ensure success of any reclamation work in this area. In order to cope with the work carried out with different agencies, it is desirable to evolve a systematic methodology. In this study, engineering properties of clays at three coastal areas, Gadukdo, Noksan and Shinho, have been generated. The analysis of data has been done within the framework of classical developments in soil mechanics. Analysis has also been made by making use of the recent developments in dealing with soft clays. The dominant factors, namely, stress, time, and environment influencing the response of clay to loading are identified.  相似文献   
7.
The effects of Coriolis force on long waves have been discussed based on gravity waves propagating in an unbounded ocean, channel and basin. In case of ocean, results show that the Coriolis effect will be significant and negligible, when the wave period is comparable to 2π/f and much shorter, respectively. Results also show in a channel, the wave amplitude and water particle velocity decrease exponentially in the positive y direction in the northern hemisphere (where f is positive). Moreover, in a basin, the Cotidal lines have been found as curves and rotate counterclockwise around the origin.  相似文献   
8.
We propose a methodology, called multilevel local–global (MLLG) upscaling, for generating accurate upscaled models of permeabilities or transmissibilities for flow simulation on adapted grids in heterogeneous subsurface formations. The method generates an initial adapted grid based on the given fine-scale reservoir heterogeneity and potential flow paths. It then applies local–global (LG) upscaling for permeability or transmissibility [7], along with adaptivity, in an iterative manner. In each iteration of MLLG, the grid can be adapted where needed to reduce flow solver and upscaling errors. The adaptivity is controlled with a flow-based indicator. The iterative process is continued until consistency between the global solve on the adapted grid and the local solves is obtained. While each application of LG upscaling is also an iterative process, this inner iteration generally takes only one or two iterations to converge. Furthermore, the number of outer iterations is bounded above, and hence, the computational costs of this approach are low. We design a new flow-based weighting of transmissibility values in LG upscaling that significantly improves the accuracy of LG and MLLG over traditional local transmissibility calculations. For highly heterogeneous (e.g., channelized) systems, the integration of grid adaptivity and LG upscaling is shown to consistently provide more accurate coarse-scale models for global flow, relative to reference fine-scale results, than do existing upscaling techniques applied to uniform grids of similar densities. Another attractive property of the integration of upscaling and adaptivity is that process dependency is strongly reduced, that is, the approach computes accurate global flow results also for flows driven by boundary conditions different from the generic boundary conditions used to compute the upscaled parameters. The method is demonstrated on Cartesian cell-based anisotropic refinement (CCAR) grids, but it can be applied to other adaptation strategies for structured grids and extended to unstructured grids.  相似文献   
9.
We propose a new single-phase local upscaling method that uses spatially varying multipoint transmissibility calculations. The method is demonstrated on two-dimensional Cartesian and adaptive Cartesian grids. For each cell face in the coarse upscaled grid, we create a local fine grid region surrounding the face on which we solve two generic local flow problems. The multipoint stencils used to calculate the fluxes across coarse grid cell faces involve the six neighboring pressure values. They are required to honor the two generic flow problems. The remaining degrees of freedom are used to maximize compactness and to ensure that the flux approximation is as close as possible to being two-point. The resulting multipoint flux approximations are spatially varying (a subset of the six neighbors is adaptively chosen) and reduce to two-point expressions in cases without full-tensor anisotropy. Numerical tests show that the method significantly improves upscaling accuracy as compared to commonly used local methods and also compares favorably with a local–global upscaling method.  相似文献   
10.
To investigate the strength of frictional sliding and stability of mafic lower crust, we conducted experiments on oven-dried gabbro gouge of 1 mm thick sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) at slip rates of 1.22 × 10− 3 mm/s and 1.22 × 10− 4 mm/s and elevated temperatures up to 615 °C. Special attention has been paid to whether transition from velocity weakening to velocity strengthening occurs due to the elevation of temperature.Two series of experiments were conducted with normal stresses of 200 MPa and 300 MPa, respectively. For both normal stresses, the friction strengths are comparable at least up to 510 °C, with no significant weakening effect of increasing temperature. Comparison of our results with Byerlee's rule on a strike slip fault with a specific temperature profile in the Zhangbei region of North China shows that the strength given by experiments are around that given by Byerlee's rule and a little greater in the high temperature range.At 200 MPa normal stress, the steady-state rate dependence a − b shows only positive values, probably still in the “run-in” process where velocity strengthening is a common feature. With a normal stress of 300 MPa, the values of steady-state rate dependence decreases systematically with increasing temperature, and stick-slip occurred at 615 °C. Considering the limited displacement, limited normal stress applied and the effect of normal stress for the temperatures above 420 °C, it is inferred here that velocity weakening may be the typical behaviour at higher normal stress for temperature above 420 °C and at least up to 615 °C, which covers most of the temperature range in the lower crust of geologically stable continental interior. For a dry mafic lower crust in cool continental interiors where frictional sliding prevails over plastic flow, unstable slip nucleation may occur to generate earthquakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号