首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   4篇
地质学   2篇
  2020年   1篇
  2009年   1篇
  2008年   1篇
  2000年   1篇
  1998年   1篇
  1993年   1篇
排序方式: 共有6条查询结果,搜索用时 671 毫秒
1
1.
A model is presented for the emplacement of intermediate volume ignimbrites based on a study of two 6 km3 volume ignimbrites on Roccamonfina Volcano, Italy. The model considers that the flows were slow moving, and quickly deflated from turbulent to non-turbulent conditions. Yield strength and density increased whereas fluidisation decreased with time and runout of the pyroclastic flows. In proximal locations, on the caldera rim, heterogeneous exposures including discontinuous lithic breccias, stratified and cross-stratified units interbedded with massive ignimbrite suggest deposition from turbulent flows. In medial locations thick, massive ignimbrite occurs associated with three types of co-ignimbrite lithic breccia which we interpret as being emplaced by non-turbulent flows. Multiple grading of different breccia/lithic concentration types within single flow units indicates that internal shear occurred producing overriding or overlapping of the rear of the flow onto the slower-moving front part. This overriding of different parts of non-turbulent pyroclastic flows could be caused by at least two different mechanisms: (1) changes in flow regime, such as hydraulic jumps that may occur at breaks in slope; and (2) periods of increased discharge rate, possibly associated with caldera collapse, producing fresh pulses of lithic-rich material that sheared onto the slower-moving part of the flow in front.We propose that ground surge deposits enriched in pumice compared with their associated ignimbrite probably formed by a flow separation mechanism from the top and front of the pyroclastic flow. These turbulent clouds moved ahead of the non-turbulent lower part of the flow to form stratified pumice-rich deposits. In distal regions well-developed coarse, often clast-supported, pumice concentrations zones and coarse intra-flow-unit lithic concentrations occur within the massive ignimbrite. We suggest that the flows were non-turbulent, possessed a relatively high yield strength and may have moved by plug flow prior to emplacement.  相似文献   
2.
The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca. 400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera Roccamonfina volcano. On the basis of new trace element and Sr–Nd–Pb isotope data, we show that the Roccamonfina shoshonitic rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes. The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788–18.851 for 206Pb/204Pb, 15.685–15.701 for 207Pb/204Pb, and 39.048–39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand, shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks. 87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc-alkaline samples have intermediate isotopic values between ultrapotassic plagioclase leucitites and shoshonites, but the lowest levels of incompatible trace element contents. It is argued that ultrapotassic magmas were generated in a modified lithospheric mantle after crustal-derived metasomatism. Interaction between the metasomatic agent and lithospheric upper mantle produced a low-melting point metasomatised veined network. The partial melting of the veins alone produced pre-caldera leucite-bearing ultrapotassic magmas. It was possibly triggered by either post-collisional isotherms relaxation or increasing T°C due increasing heat flow through slab tears. Shoshonitic magmas were generated by further melting, at higher temperature, of the same metasomatic assemblage with addition 10–20% of OIB-like astenospheric mantle material. We suggest that addition of astenospheric upper mantle material from foreland mantle, flowing through slab tearing after collision was achieved. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
3.
 The Quaternary White Trachytic Tuffs Formation from Roccamonfina Volcano (southern Italy) comprises four non-welded, trachytic, pyroclastic sequences bounded by paleosols, each of which corresponds to small- to intermediate-volume explosive eruptions from central vents. From oldest to youngest they are: White Trachytic Tuff (WTT) Cupa, WTT Aulpi, WTT S. Clemente, and WTT Galluccio. The WTT Galluccio eruption was the largest and emplaced ∼ 4 km3 of magma. The internal stratigraphy of all four WTT eruptive units is a complex association of fallout, surge, and pyroclastic flow deposits. Each eruptive unit is organized into two facies associations, Facies Association A below Facies Association B. The emplacement of the two facies associations may have been separated by short time breaks allowing for limited reworking and erosion. Facies Association A consists of interbedded fallout deposits, surge deposits, and subordinate ignimbrites. This facies association involved the eruption of the most evolved trachytic magma, and pumice clasts are white and well vesiculated. The grain size coarsens upward in Facies Association A, with upward increases of dune bedform wavelengths and a decrease in the proportion of fine ash. These trends could reflect an increase in eruption column height from the onset of the eruption and possibly also in mass eruption rate. Facies Association B comprises massive ignimbrites that are progressively richer in lithic clast content. This association involved the eruption of more mafic magma, and pumice clasts are gray and poorly vesiculated. Facies Association B is interpreted to record the climax of the eruption. Phreatomagmatic deposits occur at different stratigraphic levels in the four WTT and have different facies characteristics. The deposits reflect the style and degree of magma–water interaction and the local hydrogeology. Very fine-grained, lithic-poor phreatomagmatic surge deposits found at the base of WTT Cupa and WTT Galluccio could record the interaction of the erupting magma with a lake that occupied the Roccamonfina summit depression. Renewed magma–water interaction later in the WTT Galluccio eruption is indicated by fine grained, lithic-bearing phreatomagmatic fall and surge deposits occurring at the top of Facies Association A. They could be interpreted to reflect shifts of the magma fragmentation level to highly transmissive, regional aquifers located beneath the Roccamonfina edifice, possibly heralding a caldera collapse event. Received: 26 August 1996 / Accepted: 27 February 1998  相似文献   
4.
The Roccamonfina volcanic complex (RVC), in southern Italy, is an Early to Middle Pleistocene stratovolcano sharing temporal and morphological characteristics with the Somma–Vesuvius and the Alban Hills; both being associated with high volcanic hazard for the cities of Naples and Rome, respectively. The RVC is important for the understanding of volcanic evolution in the Roman and Campanian volcanic provinces. We report a comprehensive study of its evolution based on morphological, geochemical and K–Ar geochronological data.  相似文献   
5.
We describe the stratigraphy, chronology, and grain size characteristics of the white trachytic tuff (WTT) of Roccamonfina Volcano (Italy). The pyroclastic rock was emplaced between 317 and 230 Ma BP during seven major eruptive events (units A to G) and three minor events (units BC, CD, and DE). These units are separated by paleosol layers and compositionally well-differentiated pyroclastic successions. Stratigraphic control is favored by the occurrence at the base of major units of marker layers. Four WTT units (1 to 4) occur within the central caldera. These are not positively correlated with specific extracaldera units.The source of most of the WTT units was the central caldera. Units B and C were controlled by the western wall of the caldera, whereas units D and E were able to overcome this barrier, spreading symmetrically along the flanks of MC. The maximum pumice size (MP) of units increases with distance from the caldera, whereas the maximum lithic size (ML) decreases. MP and ML of the marker layer of unit D (MKDa–MKDp) do not show any systematic variations with respect to the central caldera. In contrast, the thickness of surge MKDa decreases with distance from the source, and MKDp accumulates to the north of MC probably controlled, respectively, by mobility-transport power and by wind blowing northwards.The grain size characteristics of the WTT deposits are used for classifying the units. There is no systematic variation of the grain size as a function of stratigraphic height either among units or within single units. Large variation of components in subunit E1, with repetitive alternation of pyroclastic flow to surge through fallout vs. surge deposits, suggests that the process of eruption took place in a complex or piecemeal fashion.Pumice concentration zones (PCZ) occur at all WTT levels on the volcano, but they are much thicker and pumice clasts are much larger within the central caldera. These were probably originated by the disruption of lava (flow or dome) to pumice fragments and fine ash due to sudden depressurization and interaction with lake waters of the molten lava. Local basal PCZ are, in some cases, similar to the lapilli-rich “layer 1P” that has been described elsewhere, and may have been deposited from currents transitional between pyroclastic surge and flow. Other basal PCZ formed in response to small undulations in the substrate, or can be originated by fallout. Lenticular PCZ within ignimbrite interiors and tops are interpreted to record marginal pumice levees and pumice rafts, some of which were buried by subsequant pyroclastic flows.Lithic concentration zones (LCZ) also occur at various stratigraphic height within the extracaldera ignimbrites, whereas intracaldera LCZ are absent, probably due to the fact that ignimbrite currents are strongly energetic and erosive near vent. LCZ at the top of basal inversely graded layers are formed by mechanical sieving or dispersive pressure in response to variable velocity gradients and particle concentration gradients (a segregation process). Coarse LCZ and coarse lithic breccias (LB), that reside in the interior or tops of pyroclastic flows and that occur in medial to distal areas, are interpreted to be the result of slugs of lithic-rich debris introduced by vent collapse or rockslides into the moving pyroclastic flows along their flow paths. These LCZ become mixed to varying degrees due to differential densities and velocities relative to the pyroclastic flows (desegregation processes).  相似文献   
6.
The Foresta ichnosite is well known for preserving some of the oldest human fossil footprints recorded in Europe so far. This research aims to: i) describe new footprints that are larger than those already reported, some of which form a new trackway that moves in the opposite direction to all the others; ii) announce the discovery of some stone tools also in the surroundings of the Foresta ichnosite. The new results increase the total number of human fossil footprints to at least 81, specify the direction and the number of footprints of Trackway C, and identify three new directions of walking at the site. More compelling and complete estimates of the dimensional range of all ichnological evidence enables us, furthermore, to estimate the number of trackmakers walking on the trampled surface as a minimum of five, one of them likely being an adult male. The general shape of all the recorded footprints suggests that the Foresta trackmakers share some similarities with those at Sima de los Huesos, and belong to the same taxonomical group as the Ceprano skull. All the new evidence enables us to better understand the presence of hominin populations in the Roccamonfina volcano area during the Middle Pleistocene. © 2020 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号