首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
地球物理   7篇
地质学   7篇
海洋学   1篇
自然地理   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2005年   1篇
  2001年   1篇
  1994年   1篇
排序方式: 共有17条查询结果,搜索用时 17 毫秒
1.
This paper presents results of a small scale study that utilized particle-tracking techniques to evaluate transport of river water through an alluvial aquifer in a bank infiltration testing site in El Paso, Texas, USA. The particle-tracking survey was used to better define filtration parameters. Several simulations were generated to allow visualization of the effects of well placement and pumping rate on flow paths, travel time, the size of the pumping influence zone, and proportion of river-derived water and groundwater mixing in the pumping well. Simulations indicate that migration of river water into the aquifer is generally slow. Most water does not arrive at the well by the end of an 18-day pumping period at 0.54 m3/min pumping rate for a well located 18 m from the river. Forty-four percent of the water pumped from the well was river water. The models provided important information needed to design appropriate sampling schedules for bank filtration practices and ensured meeting adequate soil-retention times. The pumping rate has more effect on river water travel time than the location of the pumping well from the river. The examples presented in this paper indicate that operating the pumping well at a doubled distance from the river increased the time required for the water to travel to the well, but did not greatly change the capture zone.  相似文献   
2.
Hydraulic conductivity (K) for an alluvial system in a riverbank filtration area in Changwon City, South Korea, has been studied using grain-size distribution, pumping and slug tests, and numerical modeling. The alluvial system is composed of layers: upper fine sand, medium sand, lower fine sand, and a highly conductive sand/gravel layer at the base. The geometric mean of K for the sand/gravel layer (9.89?×?10?4 m s?1), as determined by grain-size analyses, was 3.33 times greater than the geometric mean obtained from pumping tests (2.97?×?10?4 m s?1). The geometric mean of K estimates obtained from slug tests (3.08?×?10?6 m s?1) was one to two orders of magnitude lower than that from pumping tests and grain-size analyses. K estimates derived from a numerical model were compared to those derived from the grain-size methods, slug tests and pumping tests in order to determine the degree of deviation from the numerical model. It is considered that the K estimates determined by the slug tests resemble the uppermost part of the alluvial deposit, whereas the K estimates obtained by grain-size analyses and pumping tests are similar to those from the numerical model for the sand/gravel layer of the riverside alluvial system.  相似文献   
3.
In Germany, the gasoline additive methyl tert‐butyl ether (MTBE) is almost constantly detected in measurable concentrations in surface waters and is not significantly removed during riverbank filtration. The removal of MTBE from water has been the focus of many studies that mostly were performed at high concentration levels and centred in understanding the mechanisms of elimination. In order to assess the performance of conventional and advanced water treatment technologies for MTBE removal in the low concentration range further studies were undertaken. Laboratory experiments included aeration, granulated activated carbon (GAC) adsorption, ozonation and advanced oxidation processes (AOP). The results show that the removal of MTBE by conventional technologies is not easily achieved. MTBE is only removed by aeration at high expense. Ozonation at neutral pH values did not prove to be effective in eliminating MTBE at all. The use of ozone/H2O2 (AOP) may lead to a partly elimination of MTBE. However, the ozone/H2O2 concentrations required for a complete removal of MTBE from natural waters is much higher than the ozone levels applied nowadays in waterworks. MTBE is only poorly adsorbed on activated carbon, thus GAC filtration is not efficient in eliminating MTBE. A comparison with real‐life data from German waterworks reveals that if MTBE is detected in the raw water it is most often found in the corresponding drinking water as well due to the poor removal efficiency of conventional treatment steps.  相似文献   
4.
Riverbank erosion, associated sedimentation and land loss hazards are a land management problem of global significance and many attempts to predict the onset of riverbank instability have been made. Recently, Osman and Thorne (1988) have presented a Culmann-type analysis of the stability of steep, cohesive riverbanks; this has the potential to be a considerable improvement over previous bank stability theories, which do not account for bank geometry changes due to toe scour and lateral erosion. However, in this paper it is shown that the existing Osman-Thorne model does not properly incorporate the influence of tension cracking on bank stability since the location of the tension crack on the floodplain is indirectly determined via calculation or arbitrary specification of the tension crack depth. Furthermore, accurate determination of tension crack location is essential to the calculation of the geometry of riverbank failure blocks and hence prediction of land loss and bank sediment yield associated with riverbank instability and channel widening. In this paper, a rational, physically based method to predict the location of tension cracks on the floodplain behind the eroding bank face is presented and tested. A case study is used to illustrate the computational procedure required to apply the model. Improved estimates of failure block geometry using the new method may potentially be applied to improve predictions of bank retreat and floodplain land loss along river channels destabilized as a result of environmental change.  相似文献   
5.
《国际泥沙研究》2016,(4):291-298
As a result of the interaction between hydrodynamics and the effects of gravity, riverbank collapse is a common occurrence in the desert reach of the upper Yellow River (also called as Ningxia-Mongolia Inner reach), of which the riverbank may be divided into three types such as sandy riverbank in the wide-valley desert reach, silt-deposition riverbank on the fluvial plain and silt–sandy riverbank. The char-acteristics of both typical riverbank collapse and the particle size distributions (PSDs) for collapsed riverbanks of sandy, silt-deposition, and silt–sandy types were determined from analysis of data obtained from the field observations. It was found that particles from the silt-deposition riverbank had the smallest median size and those from the sandy riverbank the largest, with those from the silt–sandy riverbank being intermediate in size. The PSDs of the sandy and silt-deposition riverbanks exhibited double-peaked and single-peaked structures, respectively, while those of the silt–sandy riverbank exhibited multiple peaks. Furthermore, the corresponding to three kinds of riverbank collapse mechanisms were revealed. These results are significant with regard both to the understanding of river dynamics and to the planning of river harnessing projects.  相似文献   
6.
This study investigates the influence of ground water injection on the initial movement of non-cohesive sediment particles on a riverbank slope analytically and experimentally.By including the hydrauli...  相似文献   
7.
Thermal regime evolution and settlement behavior of a riverbank over ice-rich permafrost in 20 years were estimated by numerical simulation and layerwise summation calculation. The results show that the permafrost under the riverbank will undergo a thawing process at a dramatically rate under the conditions of practical geology and construction structure, which is responsible for a remarkable settlement. The cases on different conditions of concrete hydration, backfilled soil temperature, seepage and mean annual ground temperature were also discussed, suggesting that these factors have the capability in improving the riverbank performance, among them seepage may be of the most importance.  相似文献   
8.
This paper presents a new numerical model for river morphological predictions. This tool predicts vertical and lateral cross-section variations for alluvial rivers, which is an important task in predicting the associated hazard zone after a flood event. The Model for the HYdraulics of SEdiments in Rivers, version 1.0 (MHYSER 1.0) is a semi-two-dimensional model using the stream tubes concept to achieve lateral variations of velocity, flow stresses, and sediment transport rates. Each stream tube has the same conveyance as the other ones. In MHYSER 1.0, the uncoupled approach is used to solve the set of conservation equations. After the backwater calculation, the river is divided into a finite number of stream tubes of equal conveyances. The sediment routing and bed adjustments calculations are accomplished separately along each stream tube taking into account lateral mass exchanges. The determination of depth and width adjustments is based on the minimum stream power theory. Moreover, MHYSER 1.0 offers two options to treat riverbank stability. The first one is based on the angle of repose. The bank slope should not be allowed to increase beyond a certain critical value supplied to MHYSER 1.0. The second one is based on the modified Bishop’s method to determine a safety factor evaluating the potential risk of a landslide along the river bank.  相似文献   
9.
The literature contains limited information on variations in the factors of safety (FOS) of riverbank stability associated with river water level (RWL) fluctuations. This paper analyses a case study on the portion of the Red River flowing through Hanoi using the finite element method and extending the mechanics of saturated and unsaturated soils to understand how the riverbank’s FOS varies with RWL fluctuations. The results show that hydrostatic force is one of the key parameters influencing the FOS when the soil’s hydraulic conductivity is less than 10−6 m/s. However, the pore-water pressure and rate of RWL change are the key parameters influencing the FOS when the hydraulic conductivity is greater than 10−6 m/s. The study also indicates that a surcharge of 50 kPa or higher significantly weakens the riverbank stability and influences the FOS when the RWL rises. The construction of residential or other structures without taking special protection measures within 50 m of the lateral riverbank should be avoided for safety reasons.  相似文献   
10.
A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号