首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
地球物理   3篇
地质学   1篇
海洋学   8篇
综合类   1篇
  2022年   2篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2009年   1篇
  2008年   2篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1986年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
红海榄人工幼苗藤壶分布特征研究   总被引:4,自引:0,他引:4  
调查了广西珍珠港人工红海榄幼苗叶片上藤壶分布的特征。结果显示,在一年生幼苗叶片上藤壶的空间分布格局总体上为聚集分布。分布型因海水盐度的变化而变化,在高潮盐度Sh<20.21的海水区域内,藤壶趋向于随机分布,反之则表现为聚集分布。大约在分点潮高潮位以下,平均每日潮水浸淹时间超过5.6h的潮滩上藤壶的危害明显加再,影响了红海榄幼苗的正常生长。  相似文献   
2.
Abstract. The feeding and resting patterns of Littorina angulifera, the southern periwinkle, were observed in mangrove habitats of Belize (Central America). The snails feed predominantly on the surface of prop roots of Rhizophora mangle in a narrow zone at and above the mean high water mark. This area contains large numbers of hyphae and chlamydospores of an unidentified marine fungus (Deuteromycetes) and filaments of a chlorophyte (Chlorochytrium sp.). Both organisms are ingested by snails whose digestive tracts and fecal pellets contain ground-up cork cells, tricho-sclereids, tracheids, calcium oxalate crystals, fungal hyphae and chlamydospores, as well as undigested cyanobacteria. Most fungal particles pass through the gut unchanged. During dry periods, L. angulifera is in a dormant state, usually attached with dried mucus to leaves high in the tree, causing necrotic, crescent-shaped marks. The leaf tissue under the area of shell attachment becomes meristematic, separating dead tissues from healthy mesophyll. The snails detach during rainfall and move downward to the feeding sites on the prop roots.  相似文献   
3.
Mangroves are of great ecological and socio‐economic importance, yet they are under threat from urban development on the southern Pacific coast of Costa Rica. To test for possible nutrient‐related impacts, we compared water‐column nutrient concentrations, C and N stable isotope values and other environmental variables between mangroves with known sewage loading (three “nutrient loaded” locations) and those without such loading (three “reference” locations). Instantaneous nutrient concentrations were low at all locations, Secchi depth was greater at reference locations, and chlorophyll concentrations were higher at nutrient loaded mangroves. Suspended matter did not vary between reference and nutrient loaded mangroves, and nor did bivalve and algal δ13C and δ15N values. Enrichment of δ15N and δ13C of red mangrove leaves at the nutrient loaded locations is attributed to pulsed inputs of materials that were not detected in the instantaneous nutrient data. We provide evidence of isotopic enrichment at nutrient loaded locations from mangrove material and recommend that adequate waste water treatment be carried out on all anthropogenic discharges into this vulnerable marine system.  相似文献   
4.
Extreme events such as storm surges and tsunamis in combination with subsidence of densely populated coastal areas pose an increasing threat to millions of people in the tropics. Intertidal mangrove forests may form a natural protection against some extreme events, but have also widely been destroyed by coastal development. The establishment of mangroves and the maintenance of their stability over the short‐ to long‐term requires an understanding of sedimentary processes and landforms in the coastal zone, making geomorphology a crucial, but sometimes neglected discipline when attempting restoration for disaster risk reduction. Mangrove geomorphic setting varies markedly across the tropics, depending on abiotic parameters such as suspended sediment supply and tidal range, with different restoration strategies suitable for each. In this study we provide a global categorization of mangrove geomorphic settings, based on the literature and global remote sensing data. The world's mangroves can be broadly defined as: (1) minerogenic and high tidal range; (2) minerogenic and low tidal range; and (3) organogenic and low tidal range. We further discuss restoration and management approaches most suitable for each geomorphic setting. Overall, this study can be used to inform managers about the relevance of geomorphic knowledge for successful mangrove restoration, how an understanding of geomorphology can influence site selection and restoration success, and how to match specific restoration methods to the prevailing geomorphic context. The stronger incorporation of geomorphic knowledge into site planning and design will improve the success rates of restoration for this important and globally threatened ecosystem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
Over a three-year period (1995–1998), we studied short-term effects of dispersant use and a bioremediation strategy in two consecutive field trials in sub-tropical Australian mangroves. In each case, weathered oil was applied, and a large spill simulated, in mature Rhizophora stylosa trees around 4–9 m tall. In the first trial, we used Gippsland light crude oil with or without dispersant, Corexit 9527. In the second, a bioremediation strategy followed application of Gippsland oil or Bunker C fuel oil. Bioremediation involved forced aeration with supplemental application of nutrients. Dispersant use had an overall positive benefit shown as reduced tree mortality. By contrast, there was no apparent reduction in mortality of trees with bioremediation. However, one year after oiling, leaf densities of surviving trees were greater in bioremediation plots than in controls, and less in oil-only plots. These and other results have been incorporated into spill response management strategies in Australia.  相似文献   
6.
A programme of mangrove planting has been undertaken around the island of Rodrigues (SW Indian Ocean) since the mid-1980’s involving the introduction of the species Rhizophora mucronata. We examined three coastal embayment sites (Baie Diamant, Anse Goeland and Anse Pansia) in which planting has been undertaken over different time periods within the past 20 years. Planting has met with variable success in the different sites, probably due to variations in fluvial and groundwater influence. At two sites (Baie Diamant – first planted in 1990, and Anse Pansia – first planted in 1995) ecological data indicates that the mangroves are becoming well-established, and sedimentary evidence suggests that relatively rapid modification of intertidal substrates has occurred. This is evident in the form of significant increases in sediment organic-matter content (especially fibrous organic-matter) and an increase in the accumulation of sediment fines inside the mangroves. A strong correlation exists between the magnitude and depth of substrate modification and mangrove forest density, especially root and sapling density. At the third site, Anse Goeland (first planted in 2001), mangrove establishment has not been successful, many of the seedlings have died and no secondary colonisation has occurred. Sediment substrates show no deviation from background levels in terms of organic content or weight % fines content, and we find no evidence for mangrove planting influencing sediment substrates. Despite evidence for the development of a distinctive mangrove facies at Baie Diamant and Anse Pansia there is, however, no evidence as yet for a marked change in substrate geochemistry such as would be demonstrated by evidence of active bioclast dissolution – a common process in many natural (mature) mangrove substrates. We infer this to be a function of the present relative immaturity of the still developing mangrove substrates, but may also be a function of the apparent paucity of burrowing crabs which play an important role in nutrient cycling and sediment geochemistry. Thus whilst the mangroves in some of the study sites are reaching a stage where they are producing distinctive sedimentary facies, the systems appear to be in a state of progressive sedimentary and diagenetic modification as the floral and infaunal components of the mangroves continue to develop.  相似文献   
7.
Field measurements on leaf removal by populations of sesarmid crabs at different locations in the Bangrong mangrove forest, Phuket, Thailand, indicated that crabs on average can remove 87% of the daily leaf litter fall by ingestion or burial. The removal rate is correlated positively with the number of crab burrows and negatively with tidal inundation time. The results from the field were supplemented with observations on the behavior of Neoepisesarma versicolor in laboratory microcosms and a mangrove mesocosm. N. versicolor feeds primarily at night and total time spent feeding was up to an order of magnitude higher in the artificial microcosms than under simulated in situ conditions in the mesocosm. Most of the time during both day and night was spent resting near the entrance or inside burrows. N. versicolor mainly feeds on mangrove leaves and scraps of food material from the sediment surface. This is supported by examinations of stomach content, which showed that 62% is composed of higher plant material and 38% of detritus and mineral particles from the sediment. The nutritive value of leaves and detritus is insufficient to maintain crab growth. Sesarmid crabs may instead obtain the needed nutrients by occasional consumption of nitrogen-rich animal tissues, such as carcasses of fish and crustaceans, as indicated by the presence of animal remains in the stomach and the willingness of crabs to consume fish meat. Laboratory experiments on leaf consumption and leaf preferences of N. versicolor indicate that they preferentially feed on brown leaves, if available, followed by green and yellow leaves. If all species of sesarmid crabs in the Bangrong mangrove forest consume leaves at the same rate as N. versicolor, they could potentially ingest 52% of the total litter fall.  相似文献   
8.
红树植物红海榄叶化学组成研究   总被引:4,自引:0,他引:4  
对红树植物红海榄叶的基本化学成分水分,灰分,灰分中酸不溶物,灰分中S(SO42-),粗蛋白,粗脂肪等及氨基酸和微量元素的组成和含量进行了系统的分析测定。其基本化学组成各成分含量分别为:水分(69.18%),灰分(3.04%),灰分中酸不溶物(0.094%),灰分中S(SO42-)(0.052%),粗脂肪(7.75%),粗蛋白(7.14%);测得了红海榄叶中17种氨基酸,其总含量为10.7mg/g,其中人体必须氨基酸有7种,占所含氨基酸总量约26%;采用全谱直读等离子体原子发射光谱仪对红海榄叶进行了31种微量元素的分析测定,测得了其中18种元素的含量,红海榄叶中含有丰富的人体必须的矿物质元素。  相似文献   
9.
We investigated a well‐dated marine sediment core from the tropical SE Atlantic covering the last 25 kyr, applying taraxerol and Rhizophora pollen as organic geochemical and palynological proxies for mangrove, respectively. Taraxerol records are positively correlated with Rhizophora pollen records, showing an enhanced supply of mangrove materials into deep‐sea environments during the last deglaciation (Termination I). Sedimentation rates peaked during Meltwater Pulses 1A and 1B, which were associated with the maxima of taraxerol and Rhizophora pollen. This study supports the view that mangrove input was dominantly controlled by erosion of mangrove‐rich shelf sediments during the transgressions. Whether reworked materials were penecontemporaneous or from much older deposits formed during previous sea‐level cycles is discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
10.
Flow-through flumes were used to quantify net areal fluxes of nutrients in the fringe mangrove zone of lower Taylor River in the southern Everglades National Park. We also quantified net areal fluxes along the open water portion of the channel to determine the relative importance of either zone (vegetated vs. unvegetated) in the regulation of nutrient exchange in this system. Taylor River's hydrology is driven mainly by precipitation and wind, as there is little influence of tide. Therefore, quarterly samplings of the vegetated and unvegetated flumes were slated to include typical wet season and dry season periods, as well as between seasons, over a duration of two years. Concentrations of dissolved and total organic carbon (DOC and TOC) were highest during the wet season and similar to one another throughout the study, reflecting the low particulate loads in this creek. Dissolved inorganic nitrogen (nitrate+nitrite+ammonium) was 10–15% of the total nitrogen (TN) content, with NO−x and NH+4 showing similar concentration ranges over the 2-year study. Soluble reactive phosphorus (SRP) was usually <0·05μM, while total phosphorus (TP) was typically an order of magnitude higher. Net areal fluxes were calculated from nutrient concentration change over the length of the flumes. Most flux occurred in the vegetated zone. Dissolved inorganic nitrogen and DOC were usually taken up from the water column; however, we saw no seasonal pattern for any constituent over the course of this study. Total nutrients (TOC, TN, and TP) showed little net exchange and, like SRP, had fluxes that shifted irregularly throughout the study. Despite the lack of a clear seasonal pattern, there was a great deal of consistency between vegetated flumes, especially for NO−x and NH+4, and fluxes in the vegetated flumes were generally in the same direction (import, export, or no net flux) during a given sampling. These findings suggest that the fringe mangrove zone is of considerable importance in regulating nutrient dynamics in lower Taylor River. Furthermore, the influence of this zone may at times extend into northeast Florida Bay, as the bay is the primary recipient of water and nutrients during the wet season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号