首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   4篇
地球物理   7篇
地质学   11篇
自然地理   4篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2006年   5篇
  2004年   1篇
  2003年   2篇
  1996年   1篇
  1995年   2篇
排序方式: 共有22条查询结果,搜索用时 62 毫秒
1.
Samples collected from the Upper Ordovician Red River carbonates in a well at the centre of the Williston Basin revealed two paleomagnetic components with different inclinations, 60.3 ± 3.9° (k = 70.7, N = 12) and 20.4 ± 3.3° (k = 141.2, N = 8), but similar declination values in individual specimens. Inclination-only analysis indicates two possible scenarios for the age of these two magnetizations: in scenario (a) the timing of magnetization happened sometime between Late Ordovician to Devonian; and in scenario (b) there are two different remagnetizations, one that overlaps Pennsylvanian to Permian time while the other can have either a Late Jurassic or a Tertiary age. Whereas dolomitization and some isotopic data tend to support scenario (a), previous paleomagnetic data from the Williston Basin and from younger units in the same well, the tectonic evolution of the basin, and the hydrocarbon maturation pattern in the Red River carbonates all favour chemical remagnetization(s) driven by orogenic fluids during the Alleghenian and Laramide orogenies.  相似文献   
2.
对来自塔里木盆地北部5口钻井的部分中、新生代沉积岩岩芯样品进行了古地磁研究,通过对重磁化组分和特征剩磁组分与露头样品的比较,确定了井下样品的喜山期严重重磁化;并通过烃类分析和对磁性分选颗粒的扫描电镜观察,发现了与碳氢化合物有关的球形磁铁矿颗粒和具有黄铁矿格架颗粒的球形磁铁矿聚集体,从而认为重磁化与油气移聚相关,据此确认了喜山期的油气移聚.  相似文献   
3.
The Aït Attab syncline, located in the Central High Atlas, displays a curved geometry in plan view, and is considered as one of the most spectacular fold shapes in the Central High Atlasic belt. We conducted a paleomagnetic study in Jurassic-Cretaceous red beds to investigate the origin of this geometry. The Natural Remanent Magnetization (NRM) is dominated by a secondary magnetization carried by haematite with unvarying normal polarity that has been dated at about 100 Ma. The regional fold test performed in both limbs of the syncline is positive and the paleomagnetic vectors (after tectonic correction) are parallel throughout the curvature, indicating a negative oroclinal bending test. These results are inconsistent with previous works that consider the bent geometry of this syncline to result from subsequent distortion of originally NE–SW trending structures by rotation about a vertical axis. We interpret the NRM data to demonstrate that the changing trend of the Aït Attab syncline is a primary feature, resulting from the influence of pre-existing, NE–SW and E-W-striking extensional faults that developed during a strike-slip regime. Paleomagnetic results also reveal that the tilting observed in the sampled red beds is post Albian, probably linked to the Cenozoic inversion of the High Atlasic belt.  相似文献   
4.
5.
We have studied the paleomagnetism of the middle Cretaceous Iritono granite of the Abukuma massif in northeast Japan together with 40Ar–39Ar dating. Paleomagnetic samples were collected from ten sites of the Iritono granite (102 Ma 40Ar–39Ar age) and two sites of its associated gabbroic dikes. The samples were carefully subjected to alternating field and thermal demagnetizations and to rock magnetic analyses. Most of natural remanent magnetizations show mixtures of two components: (1) H component, high coercivity (Bc > 50–90 mT) or high blocking temperature (Tb > 350–560 °C) component and (2) L component, relatively low Bc or low Tb component. H component was obtained from all the 12 sites to give a mean direction of shallow inclination and northwesterly declination (I = 29.9°, D = 311.0°, α95 = 2.7°, N = 12). This direction is different from the geocentric axial dipole field at the present latitude (I = 56.5°) and the typical direction of the Cenozoic remagnetization in northeast Japan. Since rock magnetic properties indicate that the H component of the Iritono granite is carried mainly by magnetite inclusions in plagioclase, this component probably retains a primary one. Thus the shallow inclination indicates that the Abukuma massif was located at a low latitude (16.1 ± 1.6°N) about 100 Ma and then drifted northward by about 20° in latitude. The northwesterly deflection is attributed mostly to the counterclockwise rotation of northeast Japan due to Miocene opening of the Japan Sea. According to this model, the low-pressure and high-temperature (low-P/high-T) metamorphism of the Abukuma massif, which has been well known as a typical location, would have not occurred in the present location. On the other hand, the L component is carried mainly by pyrrhotite and its mean direction shows a moderate inclination and a northwesterly declination (I = 42.8°, D = 311.5°, α95 = 3.3°, N = 9). Since this direction is intermediate between the H component and early Cenozoic remagnetization in northeast Japan, some thermal event would have occurred at lower temperature than pyrrhotite Curie point ( 320 °C) during the middle Cretaceous to early Cenozoic time to have resulted in partial remagnetization.  相似文献   
6.
对来自塔里木盆地北部5口钻井的部分中、新生代沉积岩岩芯样品进行了古地磁研究,通过对重磁化组分和特征剩磁组分与露头样品的比较,确定了井下样品的喜山期严重重磁化;并通过烃类分析和对磁性分选颗粒的扫描电镜观察,发现了与碳氢化合物有关的球形磁铁矿颗粒和具有黄铁矿格架颗粒的球形磁铁矿聚集体,从而认为重磁化与油气移聚相关,据此确认了喜山期的油气移聚.  相似文献   
7.
杨振宇 《地球物理学报》1996,39(Z1):173-181
泰国Khorat盆地西部的晚二叠世石灰岩的古地磁研究表明磁铁矿为稳定剩磁的主要载体多组分磁分量分离技术揭示了高温磁组分(或高矫顽力)具有呈对分布的正、反极性.但是,应用逐渐展平岩层法可以发现各采样点的平均特征磁化方向在岩层展平至30%时.磁化方向最为集中.这一发现表明二叠纪石灰岩中所揭示出的磁化方向很可能形成于褶皱(期)过程中.野外观察表明,二叠纪石灰岩在印支期发生强烈褶皱并被晚三叠世湖相石灰岩角度不整合覆盖.所以二叠纪石灰岩的重磁化很可能发生在中、晚三叠世的印支期.这些石灰岩样品切片后经显微镜、扫描电镜和电子探针分析,次生磁铁矿多数与方解石微晶和铁质碳酸钙粒共生,且多分布在方解石脉附近.重磁化很可能是由于印支期造山运动时,铁质碳酸钙受碳水化合物流体的蚀变作用所引起的。  相似文献   
8.
J. -B. Edel   《Tectonophysics》2003,363(3-4):225-241
Generally, the lack of bedding criteria in basement units hampers the interpretation of paleomagnetic results in terms of geotectonics. Nevertheless, this work demonstrates that successive remagnetizations recorded in Early Carboniferous metamorphic and plutonic units, without clear bedding criteria, can be used to constrain a polyphased tectonic evolution consisting of a regional clockwise rotation, followed by a folding phase, a tilting phase and a second regional clockwise rotation.Metamorphic, ultrabasic, tonalitic and granitic rocks from different parts of Limousin (western French Massif central; 45.5°N/1.25°E), which underwent metamorphism during Devonian–Early Carboniferous or were intruded in the Early–Middle Carboniferous, were sampled in order (a) to identify the magnetic overprinting phases and the related tectono-magmatic events and (b) to constrain the regional and plate tectonic evolution of Limousin. Paleomagnetic results from 32 new and 26 sites investigated previously show that at least 90% of the magnetization isolated in rocks older than 330 Ma are overprints. In agreement with results from adjacent areas of the Variscan belt, the major overprinting phases occurred: (a) in the last stages of the major exhumation phase [332–328 Ma; mean Virtual Geomagnetic Pole (VGP) “Cp”: 37°N/70.5°E], (b) during the post-collisional syn-orogenic extension (325–315 Ma; VGP “B”: 11°N/114°E), (c) in the Latest Carboniferous and Early Permian (VGP “A1”: 27°N/149°E) and (d) in the Late Permian (VGP “A”: 48°N/146°E). The Middle–Late Carboniferous overprints “Cp” and “B” are contemporaneous with emplacement of leucogranitic, crustal derived plutons, and probably result from the hydro-thermal activity related to the magmatism. The drift from “Cp” directions to “B” directions implies that after 330 Ma, Limousin underwent a clockwise rotation by 65°, together with the Central Europe Variscides. The “Bt” components, the VGPs of which deviate from the mean apparent polar wander path (APWP) of the belt, are interpreted as “B” overprints tilted during Late Variscan tectonics, that is, in the time range 325–315 Ma. The first and most important generation of “Bt” overprints was tilted during NW–SE folding associated with NE–SW shortening, updoming and emplacement of leucogranitic plutons. The second generation reveals southeastward tilting due to NE-striking normal faulting. The drift from “B” to “A1” directions implies that Limousin has participated to the second clockwise rotation by 40° of the whole belt in Westphalian times.  相似文献   
9.
扬子地块奥陶系碳酸盐岩重磁化机制探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
碳酸盐岩是记录古地磁场信息的重要载体,然而,广泛存在的重磁化现象制约了碳酸盐岩在古地磁研究中的应用,其重磁化机制亟待解决.本文对采自贵州羊蹬地区的319块奥陶系碳酸盐岩定向样品作了详细的古地磁学和岩石磁学研究,其结果表明,94%样品(A类)记录了单一剩磁分量A,其解阻温度低于450℃;在地理坐标系下的平均方向为Dg/Ig=3.1°/48.1°(α95=2.9°),对应的古地磁极(87.0°N,2.8°E,A95=3.0°)与扬子地块古近纪-第四纪的古地磁极重合.6%样品(B类)记录了两个磁化分量,其高温分量(450℃~585℃)与A分量显著不同,但明显远离扬子块体早古生代古地磁极;低温分量(< 450℃)与A分量类似.说明羊蹬剖面奥陶系碳酸盐岩记录了两期重磁化.A分量和B低温分量的主要载磁矿物为磁黄铁矿(胶黄铁矿),B高温分量的主要载磁矿物为磁铁矿.这些磁性矿物都是成岩后的次生矿物.其中,解阻温度高于450℃的磁铁矿可能受晚燕山期造山运动影响生成;磁黄铁矿(胶黄铁矿)等矿物可能与印度板块与欧亚大陆碰撞引起的喜马拉雅造山运动所产生的流体作用有关,以后一期重磁化为主.新生代早期青藏高原隆升产生的流体在流经东南缘的碳酸盐岩等沉积岩层时,与原岩发生相互作用,使磁黄铁矿、胶黄铁矿、磁铁矿等磁性矿物生长并获得化学剩磁,造成了广泛重磁化.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号