首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   1篇
地球物理   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Latent heat polynyas are regions generating strong ice formation, convection and extensive water mass formation. Here we report on the effects of these processes on resuspension of sediments and subsequent methane release from the seafloor and on the resulting excess methane concentration in surface water on a polar shelf during winter. The study is based on measurements of concentration and δ13C values of methane, water temperature, salinity, light transmission and sea ice data collected in March 2003 in Storfjorden, southern Svalbard. In winter, strong and persistent northeasterly winds create polynyas in eastern Storfjorden and cause ice formation. The resulting brine-enriched water cascades from the Storfjordbanken into the central depression thereby enhancing the turbulence near the seafloor. A distinct benthic nepheloid layer was observed reflecting the resuspension of sediments by the cascading dense bottom water. High concentrations of 13C-depleted methane suggest submarine discharge of methane with the resuspended sediments. As the source of the submarine methane, we propose recent bacterial methanogenesis near the sediment surface because of extremely high accumulation rates of organic carbon in Storfjorden. Convective mixing transports newly released methane from the bottom to the sea surface. This eventually results in an excess concentration in surface water with respect to the atmospheric equilibrium, and a sea-air flux of methane during periods of open water. When a new ice cover is formed, methane becomes trapped in the water column and subsequently oxidized. Thus, the residual methane is strongly enriched in 13C in relation to the δ13CCH4δ13CCH4 signature of atmospheric methane. Our results show that latent heat polynyas may induce a direct pathway for biogases like methane from sediments to the atmosphere through coupling of biogeochemical and oceanographic processes. Extrapolating these processes to all Arctic ocean polynyas, we estimate a transfer of CH4 between 0.005 and 0.02 Tg yr−1. This is not a large contribution but the fluxes from the polynyas are 20–200 times larger than the ocean average and the methane evasion process in polynyas is certainly one that can be altered under climate change.  相似文献   
2.
A recent study has shown that Foxe Basin's dense waters originate from coastal latent heat polynyas and each year replace 2/3rd of the basin's deep waters by propagating southeastwards in Foxe Channel as a gravity current. The formation mechanisms in 2004 of these dense waters are examined here. Strong meteorological events occurring in mid-winter over the domain are responsible for the simultaneous opening of two large polynyas at Lyon Inlet and along Melville Peninsula's eastern coast while a third important and recurrent polynya opens earlier at Hall Beach (northwestern Foxe Basin). Large sea-atmosphere heat exchanges take place in these polynyas, leading to the production of 21.2 × 1012 kg of sea-ice and 1.53 × 1012 m3 of dense water. The ice production rate is on average five to six times higher in the polynyas than in the rest of the basin. Following the topography, the dense waters formed at Hall Beach and along Melville Peninsula cascade into Foxe Channel, while those produced at Lyon Inlet sink directly in the channel through deep convection. The two mechanisms synchronize and combine together when Lyon Inlet and Melville Peninsula polynyas open up. The heat exchanges, sea-ice and brine production rates estimated with a 21-year near-climatology are similar to those found in 2004. The results also show that the produced dense waters can overflow into Hudson Bay.  相似文献   
3.
The hydrography of the Laptev Sea is significantly influenced by river water and sea-ice processes, which are highly variable over the annual cycle. Despite of an estuarine structure the inner and outer shelf regions are decoupled at times as documented by the stability of a warm intermediate layer formed during summer below the Lena River plume. We demonstrate that a remnant of this warm layer is preserved below the fast ice until the end of winter, while only slightly farther to the north, offshore of the landfast ice in the polynya region, the pycnocline is eroded and no signature of this layer is found. The warm intermediate layer (WIL) formed during summer can be used as tracer for Laptev Sea shelf waters throughout the winter. Thereby, residence times of southern Laptev Sea waters can be estimated to be at least from summer to the end of winter/spring of the following year.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号